WebGPU: A Scalable Online Development Platform for GPU Programming Courses

Abdul Dakkak
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, USA
dakkak@illinois.edu

Abstract—The popularity of computer science classes offered
through Massive Open On-line Courses (MOOCSs) creates both
opportunities and challenges. Programming-based classes need
to provide consistent development infrastructures that are both
scalable and user friendly to students. The ‘“Heterogeneous
Parallel Programming” class offered through Coursera teaches
GPU programming and encountered these problems. We de-
veloped WebGPU - an online GPU development platform —
providing students with a user friendly scalable GPU comput-
ing platform throughout the course. It has been used as the
CUDA, OpenACC, and OpenCL programming environment
for large Coursera courses, short-running summer schools, and
traditional semester-long graduate and undergraduate courses.
WebGPU has since replaced our traditional development in-
frastructure for the GPU classes offered at UIUC. This paper
presents the original, revised, and upcoming WebGPU designs
that address the requirements and challenges of offering
sophisticated computing resources to a large, quickly-varying
number of students.

Keywords-GPU; CUDA; OpenCL; OpenACC; massive open
online courses; programming education; online education

I. INTRODUCTION

An emerging trend in post-secondary education is the
availability of massive open online courses (MOOCsS). These
courses are typically free for students to enter and consist of
video lectures, quizzes, problems, and exams delivered over
the internet and consumed through a standard web browser.
Delivering programming education this way comes with a
specific challenge: a student must have access to the required
programming tools and environments.

Exploiting the performance available in graphics pro-
cessing units (GPUs) has become fundamental in mak-
ing large data-parallel computations tractable. Extracting
the performance from GPUs generally requires using a
bulk-synchronous programming language like OpenCL or
NVIDIA’s CUDA and understanding architectural details.

As a result, more students and professionals are seeking
learning resources for GPU computing. The University of
Ilinois at Urbana-Champaign (UIUC) has developed course

This work was supported by the Starnet Center for Future Architecture
Research (C-FAR), NVIDIA GPU Center of Excellence at UIUC, and the
NSF Blue Waters Award (0725070).

The authors would also like to thank the Coursera community TAs that
helped during the Heterogeneous Parallel Programming course offerings.

Carl Pearson and Wen-mei Hwu

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, USA
{pearson, w-hwu} @illinois.edu

material that explains the concepts and programming tech-
niques for mapping algorithms into GPU programs that
architecture and tools available. Similar materials was de-
veloped as single-core, multi-core, and distributed program-
ming matured.

All GPU curriculum requires students to access systems
with GPUs for programming assignments. There are three
key challenges to overcome when providing such systems
for a MOOC:

o Number of students and student-educator ratio. The
environment cannot fall back on student/educator in-
teraction (it must “just work”).

« Variable computing capabilities available to students:
few students will have GPUs for local development or
low-latency internet connections.

o Decrease in participating students as time passes: Only
3.15%, see table I, of registered students in 2015
completed the full course.

For traditional courses, development environments are
provided to students through loaner systems, computer
labs, and/or educational/research clusters. These systems are
not practical for delivering development environments in
a MOOC setting. Loaner systems and computer labs are
inaccessible to remote students, and providing access to
a cluster ultimately requires over-provisioning of hardware
(and therefore the cost). Furthermore, it is impossible to
expect a consistent student GPU development environment.

WebGPU explores an efficient solution to these chal-
lenges. It is a scalable online GPU programming environ-
ment accessible though the web. By removing access to
fully-featured system environment and developing targeted
labs, WebGPU simplifies management without unduly im-
pacting educational capability. The number of GPUs avail-
able through WebGPU can be dramatically fewer than the
expected number of concurrent users, and can be dynami-
cally scaled as the course participation changes.

The rest of this paper is organized as follows. Section II
describes the challenges of providing computing resources
for MOOC:s. Section III describes the system architecture
of WebGPU, with emphasis on security and scalability. Sec-
tion IV describes how the instructors and students interact
with WebGPU. Section V describes some of the courses that

WebGPU has been used to deliver. Section VI describes
some lessons learned in the development and deployment
of WebGPU and an improved architecture design. Finally,
section VIII concludes.

II. MOOC CHALLENGES AND WEBGPU APPROACH

Between 2002 and 2011, online enrollment in degree-
granting post-secondary institutions grew at an annual rate
of 17.3%, from 1.6 million to 6.7 million students. At the
same time, the total enrollment in the same institutions grew
at an annual rate of 6.7% This reflects the broad agreement
that online education is an important and sustainable part of
pedagogy, useful to students, and online degrees are accepted
in the workplace [1, pp.14-18].

MOOC:s take the idea of online education to its farthest
extent: fully-online classes with large enrollments, often
without geographic restriction or requirements of prior ad-
mission into an academic institution. This presents three
challenges when delivering programming education online.

A. Large Course Enrollments

Large enrollment causes management challenges that are
not unique to MOOC:s: a large course enrollment requires
a large staff of educators to effectively administer the
course. In traditional courses with enrollments of hundreds
of students, there might be a single lecturer and a dozen
teaching assistants. Large MOOCs like Duke University’s
Think Again [17] have tens or hundreds of thousands of
active students. Providing a traditional teaching staff for a
free course of this size is cost-prohibitive. WebGPU tackles
this problem by taking advantage of being a completely-
online development environment to reduce the amount of
supported capabilities exposed to the students. Furthermore,
WebGPU provides automated grading of the programming
assignments to reduce the load on the teaching staff.

B. Variable Access to Computational Resources

The problem of large course enrollments is compounded
in programming courses, which require development tools
and environments as well as potentially specialized hard-
ware. Assuming all students will have access to the tools and
hardware and use them in a consistent way is not practical.
MOOC:s are not the only courses where this is a challenge —
in traditional academic contexts an instructor often devotes
the initial lectures and labs to describe the development
environment and tools.

In traditional classrooms, instructors can usually leverage
one or more of the following options to provide students
with consistent computing environments:

1) Individual/Loaner Systems: Students may be pro-
vided with individual computer systems (laptops, de-
velopment boards, etc.) upon which all development
is done.

Table I
REGISTERED USERS, COMPLETION RATES, AND ISSUED CERTIFICATES
FOR THE THREE YEARS THAT HETEROGENEOUS PARALLEL
PROGRAMMING HAS BEEN OFFERED THROUGH COURSERA.
CERTIFICATION MEANS THAT THE STUDENT ATTENDED A PROCTORED

QUIZ.
Year | Registered Users | Completions | Completion Rate | Certificates Issued
2013 36896 2729 7.40% -
2014 33818 1061 3.14% 286
2015 35940 1141 3.15% 442

2) Computer Labs: Machines may be set up for student
use in a fixed location. The student typically must be
physically present to use one of these workstations,
and they are shared with other students.

3) Educational/Research Cluster: Typical use takes
place through a submission queuing system, where
programs are submitted and scheduled onto cluster
nodes based on their resource requirements and max-
imum run time.

The first two solutions are logistically impossible for a
MOOC with global students. Remote cluster access seems
like a plausible solution: clusters are already designed to
support many concurrent remote users. Clusters are shared
resources with particular OS and compiler versions that often
are not compatible with the devices used in a structure GPU
programming course. Also, the cost of provisioning of tens
of thousands of users on an academic cluster is high.

In place of a command-line prompt, WebGPU requires
a web browser, making it accessible to all students partici-
pating in the course. Any operating system and computing
device may be used — in fact, around 2% of student logins
to WebGPU are from tablets and smartphones. This also
reduces the support required of the educators; when bugs do
arise, educators can apply the fix by updating the website.

C. Farticipation Reduces as Course Progresses

As with other MOOCsS, participation in the course de-
creases as time goes on. Jordan [11] finds that the average
MOOC completion rate is 15%. For the Heterogeneous Par-
allel Programming Coursera course offered using WebGPU,
completion rates are shown in Table L.

This means that a statically-provisioned computing re-
source large enough for the beginning of the course will
be mostly idle by the end of the course once many students
have left. WebGPU builds on the cloud computing principle
and handles this challenge through a modular architecture
that separates web-server, database, and worker nodes so
resources can then be scaled separately as demands require.

III. SYSTEM ARCHITECTURE

WebGPU is designed to be a fault tolerant system able
to handle thousands of students submitting GPU tasks con-
currently. Figure 1 shows the number of active students per
hour from February 8" 2015 to April 15" 2015. WebGPU

80 5

60 - 5

40}]

Active Users

20+ 5

Mar/09 Mar/23 Apr/06

Time in hours

(o] S L
Feb/09 Feb/23

Figure 1. The number of active students per hour on WebGPU from
February 8¢ 2015 to April 154" 2015. The number of active students varies
from 112 on February 18" to 8 on April 9¢”. In the 2015 Heterogeneous
Parallel Programming course, Thursday was the lab deadline. A spike
occurs every Wednesday as students rush to complete the lab.

design enabled it to scale through the fluctuations of students
— thousands of users per day towards the start of the course
to 200 users at the end. As can be seen, weekly spikes
happen on Wednesdays, since the deadline is on Thursdays.
We increased the number of GPUs available to WebGPU the
day before the deadline.

Section II described three challenges in offering GPU
computing resources to students enrolled in a MOOC: num-
ber of students, variable accessibility to GPUs, and dramati-
cally shifting enrollment. Traditional HPC clusters could be
used to provide students with the required resources, but
come with several disadvantages:

« Significant resources expended on fair scheduling for
arbitrary workloads, general filesystem and storage
access, fine-grained user permissions, and other tools
to support general use increase the administration over-
head and complexity of use for the students.

e In 2013, when we first started to use WebGPU, GPUs
were not as prevalent on HPC clusters. MOOC students
would compete severely with other cluster users.

o HPC Clusters must be secure. Allowing anyone to sign
up for the course without verification makes it impossi-
ble to share the cluster with any security-sensitive users.

o The practice of building and scheduling jobs on a
cluster can be a deterrent to introductory students, and
is of little pedagogical value for GPU parallelism.

o A large cluster for the students present at the beginning
of the course would be idle at the end of the course.

e A separate assignment grading system needs to be
created for students to submit their completed work.

This section describes the modular design WebGPU uses
to avoid the above issues. Fundamentally, WebGPU consists
of three types of nodes hosted on Amazon AWS [2]: web-
servers, databases, and workers. Since these three node types
are separate, each can be scaled as required. Figure 2 shows
a high-level view of the system architecture.

A. Web-Server

The web-server @ generates the site’s HTML code and
handles user requests. It connects to the database and other

Figure 2. The architecture for WebGPU has three classes of services -
web-servers @, database servers @, and workers @. A web-server contains
logic to accept user requests, store and retrieve information from a database,
and dispatch jobs to a pool of workers. A worker accepts code from the
web-server performs the compilation and execution of the user code in a
sandbox environment. The results are sent to the web-server and relayed
to the user.

external gradebooks. It automatically saves all student code,
and their compilation and execution status, and previous
attempts so that a user can backtrack to earlier versions
of their code. This allows students to develop their code
incrementally and explore the lab beyond the specified
requirements. It also minimizes and extra work the students
need to do in order to submit their work for grading. Finally,
the web-server acts as an intermediary, dispatching jobs to
a node in the pool of workers and relaying the results users.

B. Database Server

A database @ stores all user records such as user profile,
program submissions, and grades. Initially WebGPU used
a MySQL database but has since migrated to Amazon’s
Aurora database. The web-server maintains a connection
pool to the database and records user submission activity.

C. GPU Worker Nodes

Upon a user program submission, the web-server @
selects a single worker node and sends user code along with
configurations specified by the lab. The worker node then
compiles, executes, and evaluates the code using the datasets
provided by the instructor. The results along with any error
messages produced are sent back to the web-server which
relays it to the user.

To maintain fairness, time limits are placed on the sub-
mission rate and on the duration of the compilation and
execution of user code. The time limits can be adjusted on
a per lab basis.

An additional task is for the worker node to send regular
health checks to the web-server. The web-server would evict
the worker from the pool of workers if a health check is not
received within an allotted time.

D. Security

To maintain security we use a combination of black listing
certain function calls at compile time and white listing the
system calls allowed at runtime.

The black listing is performed on the user code. A textual
scan on the unparsed code disallows certain strings such
as asm (); which introduces inlined assembly which may
potentially escape any sandbox in place. This method rejects
code which contains the black listed functions even within
comments. If the black list search is run on the code after
running the preprocessor, we can avoid false negatives, but
few users found the false negatives a nuisance.

Execution of the user code must be done using unpriv-
ileged permissions and in a sandbox environment. We use
setuid to execute the user code as unprivileged user who
can only write to a unique temporary directory created for
each compilation. For sandboxing, we utilize the Linux ker-
nel’s seccomp facilities introduced in 2.6.12. The seccomp-
bpf extension allows us to provide a whitelist of posix calls
that are allowed to be run by a process. The whitelist is
provided by the instructor on a per lab basis.

Aside from the above, the physical separation of user code
from the main logic on the web-server provides additional
security. Since user code is only compiled and executed on
the worker nodes, a user able to thwart our security measures
would be confined to the worker node and cannot access
critical data found on the database.

IV. INTERFACE OF WEBGPU

This section describes how students and instructors in-
terface with WebGPU. All students interact with WebGPU
through standard web browsers. Instructors can manage ex-
isting course content through a web browser, but developing
new content requires familiarity with the system deployment
and Linux command line.

A. Student Actions

WebGPU restricts the available actions that a user can take
to vastly reduce the per-user cost of maintaining the system.
Broadly speaking, students can only take six actions:

1) Edit code: students are presented with an editor
where they can develop their code. The editor provides
autosave capabilities as well as syntax highlighting
for the programming languages used in the course.
Figure 3 shows a view of the editor.

2) Code compilation: students are presented with an
interface to compile their code. Compilation is done on
a worker node and errors are reported to the student.

3) Run code against a provided dataset: students
can evaluate their code against instructor provided
datasets. If a mismatch occurs between the computed
and the expected values, the student is informed.

4) Provide short-form answers to questions: users are
asked questions that are pertinent to their code. Unlike

the multiple-choice quizzes, these are textual answers
with not-necessarily one correct answer.

5) Submit code for grading: upon completion of the lab
development, students submit their code for grading.
This evaluates their program on all the datasets using
the grading rubric defined.

6) View code history: code edits, code submissions, and
grades are all saved and viewable by the students.
Students can inspect and compare to previous codes.

These actions are sufficient to allow the student to develop
solutions to the labs in a direct and natural fashion.

B. Lab Solution Development and Submission

A student can access five components of the lab material
through a web browser.

1) Description: This is the manual for the lab, gen-
erated from the markdown-formatted [8] description
described in section IV-E. The grading rubric is also
shown to the students.

2) Code: This view consists of a text editor and compi-
lation controls. Initially, the text editor contains any
skeleton code of the solution. Figure 3 shows an
example of a code view for the vector-addition Lab
as rendered in Google’s Chrome web browser.

Description Code Questions Attempts History

Machine Problem Code
Compile & Run ~

Dataset 0

#include <wb.h>
Dataset 1
__global__ void vecAdd(fleat *inl, fleat *in2, float *out, Dataset 2
//@@ Insert code to implement vector addition here alase

Dataset 3

int main(int argc, char **argv) { Dataset 4

wbArg_t args;
int inputLength; Dataset 5
loat *hostInputl;
float *hostInput2;
float *hostOutput; All
float *deviceInputl;
float *deviceInput2;
float *deviceOQutput;
Figure 3. An example Code View, showing the drop-down menu with

compilation controls. The student would be responsibly for filling out the
vector-addition kernel vecAdd skeleton code. To test, the student can run
against the various datasets in the drop-down menu. The wb.h WebGPU
support library header is visible at the top of the code.

When the code is run against a test dataset (an
attempt), the student is presented with any mismatches
between the program result and the test dataset. Each
attempt is stored under the Attempts view so the
student can refer to it later. A student can generate
a public link to their attempt once the lab deadline
has passed.

3) Questions: This view shows any questions that the
teaching team requires the students to answer. There
is no system for automatic grading of questions.

4) Attempts: This view shows the result of every time
the code has been run against one of the test data sets,
as well as the result of the attempt. The student may
view what the code looked like during that attempt,
as well as any mismatches between the program result
and the test datasets.

5) History: The entire revision history of the code is
available in this view. Figure 4 shows an example view
of coding history.

Description Code Questions Attempts History

Program History

Program Summary Last Updated

#include _global__ void vecAddifloat ‘in1. less than a minute ago

<wb.h> _global__ void vecAdd(float ‘i about 4 hours ago

clude <wb.h> _global__ void vecAdd(float ‘i about 4 hours ago

Figure 4. An example History View, showing a code snippet in the left
column and the update time in the right column.

C. Optional Offline Development

The lab solution skeletons, test generators, and WebGPU
library [5] are publicly available for students to develop their
code offline. This requires that the student have access to
a system with a C++ compiler, a CUDA compiler, and an
NVIDIA GPU. The student must build the WebGPU support
library, link it with the solution code, and test it with data
produced by the generators. The build uses CMake script to
make the build process portable across compilers and IDEs.
Final submission must be done using WebGPU.

D. Peer Reviews

Since labs build on concepts in previous labs and read-
ing (and not just writing) code is an important aspect of
programming, WebGPU provides students the ability to
evaluate each others’ lab submissions. For example, in the
second offering of Heterogeneous Parallel Programming,
each student was assigned three other random students’ labs
with 10% of the lab’s grade given to the completion of the
peer reviews. Since WebGPU cannot evaluate the accuracy
of the peer review, points were assigned for completing the
peer review and did not impact student’s grade.

Due to the random assignments, many students were
offering reviews without receiving them. The high drop rate
at the beginning of the course caused low probability of
an active student being assigned an active peer reviewer.
Complaints from users about not receiving peer reviews
forced a decrease the weight of peer review to 5% and then
phase out of the peer review in the third offering of the
course. Students can share their attempts with others after
the lab’s deadline has passed. We are exploring an automated
feedback approach for future offerings of the course.

E. Instructor Lab Creation

WebGPU is intended to be managed by its developers,
and little emphasis was initially placed on a user-friendly
lab creation system. Unlike the students who only need a
web browser, lab creation requires a remote terminal and
familiarity with system configuration. A lab is defined by:

1) Lab Description: a file in markdown [8] format. This
description can include any text, images, and external
links that are desired.

2) Solution Skeleton: This skeleton is starter code shown
to the students when they first access the lab.

3) Datasets: Instructors provide both input and expected
data for the lab. The files are used to check the
correctness of student submissions.

4) Short-answer Questions: Questions to gauge students
understanding of material can be specified, and there
is no provision for automatically grading questions.

5) Configuration Data: A JSON file which describes the
problem deadline, how to award points, the name of
the Lab, and other similar information. Points are arbi-
trarily divided among datasets, short-answer questions,
presence of keywords, and successful compilation.

FE. Grading

WebGPU provides two complementary types of grading:
automatic and instructor-driven. When a program is submit-
ted, a student may specify the test datasets to run against.
Results are returned to the student and stored in the database.

After students complete a submission, the system assigns
a grade automatically and records it in the grade book
(storing the grade in Coursera, for example). Instructors are
provided an interface to override a grade.

Unlike lab creation (discussed in Section IV-E), the In-
structor Tools are only accessible through a web browser.
These are the tools that the teaching staff uses to manage
grades and formal feedback for the labs.

Figure 5 shows the class roster view. This shows all
students with a submission attempt for the Lab. Through
the Roster interface, the instructor navigates to a student
submission and review their code history, submission history,
grades, and short-answer submissions. The instructor is able
to comment on student’s code and questions.

V. TEACHING WITH WEBGPU

This section briefly describes the content of courses
that WebGPU has been used to provide GPU computing
resources for. Most courses are taught in the CUDA pro-
gramming language, but WebGPU also supports OpenCL,
OpenACC, and MPI. Some of the WebGPU-hosted labs and
the courses they are used for are listed in Table II.

From 2013-2015, the Heterogeneous Parallel
Programming[9] Coursera course used WebGPU for
programming and grading environment all students. This
course serves as an introduction to GPU programming

Expand All Students

Class Roster for Machine Problem

Email Name Log Program Grade Questions Grade Total Grade Last Updated
=EHv 95 0 100 2months ago
EHv 30 0 38 2 months ago
=Hv 9 o 98 2 months ago
EBv 95 o 100 2months ago
EBv o5 [95 2 months ago
=Hv 9 0 100 2months ago
EHv o5 o 100 2 months ago
Figure 5. An example Roster View, showing student names and emails

(blurred in this example), quick access to student attempts, coding history,
and grades, the program grade, the short-answer question grade, the total
grade, and the time of submission.

Table II
WEBGPU-HOSTED LABS AND THE COURSES THEY ARE USED FOR. HPP
IS HETEROGENEOUS PARALLEL PROGRAMMING, 408 AND 598 ARE
ECE 408 AND ECE 598 HK AT UTUC, AND PUMPS 1S PROGRAMMING
AND TUNING MASSIVELY PARALLEL SYSTEMS AT UPC BARCELONA.

Sl

P

2|

Lab Description Hi PUMPS
Device Query Demo Lab to introduce WebGPU to students.
Vector Addition

Basic Matrix iplicati

Tiled Matrix Multiplication

8 | 598
X

CUDA kernels.
Boundary checking and indexing.
Tniroduce shared memory tiling.

2D Convolution

Constant memory and shared memory.

Reduction and Scan

Floating-point, work-efficiency, tree-like structures.

PIEIEIEIEIEIE

| 5| 5 5| ¢ | ¢ | ¢ | S

Tmage |

Atomic

OpenCL Vector Addition

OpenCL

Scatter to Gather

Transformation between scatter and gather.

Stencil

Register tiling and thread-coarsening.

SGEMM

Register tiling and thread-coarsening.

SPMV

Sparse matrix formats and performance effects.

Input Binning

Input Binning and performance effects.

I I

BFS Queuing

Hierarchical queuing performance effects.

BIEIEIE]

Multi-GPU Stencil with MPI Multi-GPU and MPL

techniques and hardware. The content has evolved yearly
to reflect optimizations and techniques available for new
generations of GPUs.

ECE 408 uses GPU programming and CUDA as a mo-
tivation for parallel programming and parallel algorithm
fundamentals, and ECE 598HK provides more detailed and
in-depth exposure to advanced algorithmic techniques. For
both of these courses, WebGPU scales down in the number
of worker nodes and serves as a development environment
for a traditional course offering. WebGPU peer review was
not used as the teaching team was able to fill that role
because of the smaller class size.

Using WebGPU for ECE 598HK was offered simul-
taneously at three additional institutions: North Carolina
State University, the University of Tennessee Knoxville, and
Oklahoma University. Each institution had a local teaching
staff to handle questions about the course content, but all Lab
development was done in WebGPU and all lectures were
delivered by video online from the University of Illinois.
This style of offering is a hybrid between the MOOC model
and the traditional course style.

WebGPU’s restrictions on code run time, API calls, and
lack of exposed file system make it inappropriate for open-
ended course final projects. A traditional HPC cluster at the
UIUC was used by students for both ECE 408 and ECE
598HK final projects. This is an area that has been targeted

for improvement in future versions to the system.
WebGPU has also been used as the programming en-
vironment for PUMPS [21] an intensive week-long GPU-
programming summer school. The rapid nature of this
course exposed how requiring instructors to be familiar with
WebGPU to deploy new labs is a significant limitation when
instructors want to adjust course content quickly.

VI. WEBGPU 2.0 ARCHITECTURE

Student and instructor features continue to drive improve-
ments to WebGPU’s infrastructure. Based on our experience
with WebGPU, as well as feedback from instructors at other
institutions, we are in the process of rewriting WebGPU to
make it usable for courses outside of UIUC.

Figure 6. The new WebGPU architecture uses an OpenEdx @ frontend
where we have developed an XBlock for programming. OpenEdx uses a
message broker @ to queue jobs to the worker nodes @. The worker nodes
are automatically scaled and metrics and logging information on a replicated
database @. Lab datasets are stored on an Amazon S3 Bucket ® which is
accessible by both the OpenEdx instructor and the worker nodes.

A. System Architecture

WebGPU 2.0 is an infrastructure overhaul, utilizing new
technologies not available 3-4 years ago. Figure 6 shows
the current infrastructure. Like the previous design, there is
a separation of subsystems.

We now use OpenEdx @ as an interface for instructors
to author the labs and the students to develop the labs. This
was a result of both instructors and students wanting the
same site and interface for all course content — be it quizzes,
videos, or programming labs.

OpenEdx communicates with a queue message broker
server @ that can be replicated across Amazon availability
zone — offering resiliency against faults and better response
times for the students.

Worker nodes @ poll the queue, accepting a job if the
node meets the job requirements. This allows us to tag a
lab as requiring Multi-GPU support or MPI support and
dispatching jobs to the correct node. It also means that we do
not need to provision our worker nodes to have the resources
for the highest common multiple for the system requirements
of the labs, thus reducing the overall Amazon charges.

Whereas the web-server pushed jobs to a worker node in
the previous WebGPU architecture, the current requires the
worker node to request a job from the queue. This means
that we can more freely perform automatic scaling of the
worker nodes in the current architecture.

Each worker node constantly monitors the system, per-
forming necessary health checks, as well as validation of
state. This information is stored in a replicated database @.
An information dashboard is available to the system admin-
istrators to track the system status.

In WebGPU 2.0, a worker node architecture is connected to
the job queue server @, a database for recording metrics and logging
information @, a configuration file server ®. The main driver @ connects
these servers and maintains a pool of Docker [6], [19] containers &. The
docker containers are mapped onto physical GPUs ® that are present on
the system.

Figure 7.

B. Worker Node Architecture

Figure 7 shows the internals of each node in the new
architecture. Again, a worker node is connected to the
queue @ and the external database @. The worker node
is also connected to a remote configuration system @. This
allows all worker nodes to be remotely configured uniformly.

A change in the remote configuration triggers the worker
node to restart the main driver @ which accepts work
from the queue. The driver maintains a pool of Docker
containers ® which are mapped onto a fixed number of
GPU nodes ®. Each time a job is accepted from the queue,
the driver selects the appropriate Docker container (the
containers are configured to have the essential tools required
for the lab — a CUDA lab will not, for example, have
the PGI OpenACC tools) and run the job in the container.
Previous work [18] shows that docker containers do not
add extra overhead when executing GPU code. Because we
maintain a pool of containers, we can delete a container
after a job complets and start a new container to replenish
the pool.

VII. RELATED WORK
A. Web-accessible Clusters

Lin [12] describes a web interface for cluster job dis-
tribution and multi-platform source handling in the context
of providing parallel and distributed computing resources
for a CS curriculum. The portal provides source file man-
agement as well as compilation of C, C++, and Java, and
execution of the resulting binaries. Like WebGPU, this web
interface allows non-expert students to use the development
environment. WebGPU follows this design, but also tackles
the underlying problem of system scalability in the context
of large, fast changing, number of students.

B. Online IDEs and Compilers

Microsoft [13] has an online version of their Visual Studio
integrated development environment (IDE), and Eclipse’s
Orion [7] is a similar IDE for Java. These tools are notewor-
thy in that they are full-featured development environments
that can be used through a web browser. IDEs offer a wide
range of sophisticated code-writing and analysis tools such
as tab-completion, refactoring, and measures of complexity.
For the simple educational programs used in programming
courses these capabilities can detract from the core peda-
gogical focus. For that reason WebGPU does not include
most of those capabilities. Furthermore, WebGPU tackles
the problem of providing GPU resources to users.

Many simpler tools such as Coding Ground [20],
CodeChef [3], and ideone [10], allow code to be edited,
compiled, and run in a web browser without the level of
sophisticated programmer assistance offered by a full IDE.
These editors commonly offer code highlighting, simple
automatic formatting, and simple tab-completion. WebGPU
to offer tools for CUDA, OpenACC, OpenCL online pro-
gramming, and specializes it to course management with
the functions described in this paper.

Computing notebook environments combine simple code
editing and execution with images, video, and rich text
in a single page (a notebook) in a web browser. Wolfram
Cloud [22] and IPython [14] are two such environments
that support embedding and executing the Mathematica and
Python languages, respectively. Wolfram Cloud is backed by
cloud storage and includes methods for collaboratively edit-
ing notebooks. These tools demonstrate an excellent format
for delivering code and examples to students, but there is
no built-in provision for managing deadlines, grading, or
providing GPU computing for students.

C. Online Programming Education Systems

gwikLabs [16] organizes learning material and activities
into an online learning environment that is focused on cloud
computing management. Labs take the form of instructions
to guide users through a real-world use case on the actual
environment they are learning about. Like WebGPU, qwik-
Labs only requires a web browser, but the full development

systems are exposed to the user to support qwikLab’s goal
of teaching a wide variety of cloud computing systems.
WebGPU is designed for free GPU programming courses,
so removing some flexibility to reduce cost is crucial so long
as the restrictions do not impact the education experience.
Truong, Bancroft, and Roe [15] describe the Environment
for Learning to Program (ELP), a fully-online programming
environment used at Queensland University of Technology.
Like WebGPU, the goal is to introduce programming to
students without requiring them to familiarize themselves
with the full development environment. ELP is also accessed
through a web-browser, and utilizes server-side compilation.
WebGPU expands on the same formula as ELP by tacking
problems of scalability and providing GPUs to students.

VIII. CONCLUSION

This paper describes the design and interface of WebGPU,
a scalable online development platform for GPU program-
ming courses. The fundamental challenges of providing
computing resources for a GPU programming MOOC is the
number of students and the limited availability of GPUs and
CUDA to the global population. WebGPU was developed at
the University of Illinois at Urbana-Champaign to explore
solutions to these challenges while providing a practical
system for offering the Heterogeneous Parallel Programming
course on Coursera.

By using standard web browsers, the broadest possible
audience is able to participate in the course. In all, over
100,000 thousand students participated in the Coursera
course over the last 3 years. By restricting the students’
actions, a scalable system can offered on top of inexpen-
sive commodity cloud resources, and making management
possible for large number of students.

WebGPU provides an example of how sophisticated com-
puting resources can be provided to a large global body
of students with complexity that is manageable for a small
team of educators and cost that is low enough for the course
to be offered for free. Future work on WebGPU includes
automated feedback to students and on-demand help/hints
during development.

REFERENCES

[1] 1. E. Allen and J. Seaman, Changing Course: Ten Years for
Tracking Online Education in the United States, ERIC. Re-
trieved from http://files.eric.ed.gov/fulltext/ED541571.pdf Dec
28, 2015.

[2] Amazon Web Services, Inc. amazon web services. https://aws.
amazon.com

[3] CodeChef. Code, compile, and run. Retrieved from https:
//www.codechef.com/ide

[4] Coursera Inc. Cousera. Retr from https://www.coursera.org/
Jan 9, 2016.

[5] A. Dakkak. libwb. https://github.com/abduld/libwb

[6] Docker. Docker https://www.docker.com/
[7] Eclipse Foundation. Orion. https://orionhub.org

[8] J. Gruber. Markdown

markdown/

http://daringfireball.net/projects/

[91 W. Hwu. Heterogeneous parallel programming https://www.
coursera.org/course/hetero

[10] Ideone Ideone - online compilers and interpreters. https://
ideone.com/

[11] K. Jordan. MOOC completion rates: The data. Available
at: http://www.katyjordan.com/MOOCproject. html.[Accessed:
27/08/2014], 2013.

[12] H. Lin. Teaching parallel and distributed computing using a
cluster computing portal. 2013 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd
Forum. IEEE, 2013.

[13] Microsoft. Visual Studio - Microsoft developer tools.
visualstudio.com

[14] E Pérez and B. E. Granger. IPython: a System for In-
teractive Scientific Computing. Computing in Science and
Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL: http://ipython.org

[15] N. Truong, P. Bancroft, and P. Roe. A web based environment
for learning to program. Proceedings of the 26th Australasian
computer science conference-Volume 16:255-264, 2003. Aus-
tralian Computer Society, Inc.

[16] qwikLABS. gwikLABS https://qwiklabs.com/

[17] R. Riddle. Premilinary results on Duke’s third Coursera
effort, “Think Again”. https://cit.duke.edu/blog/2013/06/
preliminary-results-on-dukes-third-coursera-effort-think-again.
html.[Accessed: 13/01/2016], 2013.

[18] épaéek, FrantiSek and Sohlich, Radomir and Dulik, Tomas,
Docker as platform for assignments evaluation, Procedia En-
gineering 100 (2015): 1665-1671.

[19] Haydel, N., Gesing, S., Taylor, 1., Madey, G., Dakkak, A., de
Gonzalo, S. and Hwu, W. , Enhancing the Usability and Uti-
lization of Accelerated Architectures via Docker, UCC Cloud
Challenge (8th IEEE/ACM International Conference on Utility
and Cloud Computing), 7-10 December, 2015, St. Raphael
Resort, Limassol, Cyprus.

[20] TutorialsPoint. Coding ground. http://www.tutorialspoint.
com/codingground.htm

[21] Universitat Politecnica De Catalunya Barcelona. Program-
ming and tuning massively parallel systems. http://bcw.ac.upc.
edu/PUMPS2015/ html.

[22] Wolfram Research. The Wolfram Cloud. https://wolframcloud.
com.

