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Abstract— We report scalable solutions of inverse-scattering
problems with the distorted Born iterative method (DBIM) on
large number of computing nodes. Distributing forward solutions
does not scale well when the number of illuminations is not
greater than the number of computing nodes. As a remedy, we
distribute both forward solutions and the corresponding forward
solvers to improve granularity of DBIM solutions. This paper
provides a set of solutions demonstrating good scaling of the
proposed parallelization strategy up to 1,024 computing nodes,
employing 16,394 processing cores in total.

I. INTRODUCTION

Iterative solutions of nonlinear inverse-scattering problems
with the distorted Born iterative method (DBIM) require
several forward solutions for each object illuminations in each
iteration. Distributing these illuminations among message-
passing interface (MPI) processes, where each process handles
a certain number of illuminations, was first proposed in
[1]. In monochromatic object reconstructions, this strategy
provides a good load balancing since the iterative forward
solvers involve the same matrix system with different right-
hand sides, often yielding similar number of iterations. This
strategy is also implemented on 256 computing nodes involv-
ing graphics processing units (GPUs), where each forward
solution is obtained on a single GPU [2]. However, distributing
illuminations is not scalable because of the finite granularity
of the partitioning strategy. To improve the granularity, we
simultaneously distribute the illuminations and corresponding
forward solutions among MPI processes, which can employ
more number of nodes than the number of illuminations.

II. EFFECT OF THE NUMBER OF ILLUMINATIONS

Consider a scenario where a numerical Shepp-Logan phan-
tom [3] is placed into a reconstruction domain with an
equal side length of 102.4)\, where A is the wavelength in
the background medium. The object is illuminated and the
scattered field is collected by 1,024 transmitters and receivers,
respectively. The solution domain is discretized with 1,048,576
pixels, whose wave properties are unknown. When all il-
luminations are involved into the numerical reconstruction,
the corresponding right-hand side has 1,048,576 complex
numbers, equal to the number of unknowns. However, prac-
tically, including all illuminations is not only costly, but also
redundant since the finite precision of the numerical solutions
spoils the conditioning of the nonlinear inverse problem.
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Reconstructions of a numerical Shepp-Logan phantom with various
number of illuminations. The relative object mismatches are noted in the
lower-right corners. The reconstruction with 256 illuminations yields less than
10% mismatch, yielding a fair perception of the object details.

Fig. 1 shows five reconstructions of the numerical phantom
with various numbers of illuminations. The DBIM solver
performs 50 iterations without any regularization on the cost
functional or intentional noise on the measured data. It can
be seen that inclusion of all the 1,024 illuminations is not
necessary for practical imaging purposes.

III. PARALLELIZING ILLUMINATIONS

The DBIM solutions in Fig. 1 partitions the illuminations
among computing nodes, where each node handles an equal
number of illuminations. The forward solutions are obtained
with the multilevel fast multipole algorithm (MLFMA), where
each node employs a single solver running on multi-core
processors with 16 floating-point cores. To employ the shared-
memory cores, the MLFMA solvers are parallelized on 16
open multi-processing (OpenMP) threads, where each thread
employs a single core. The forward solutions are obtained with
BiCGStab iterative scheme.

TABLE I
RECONSTRUCTION TIMES WITH A FIXED NUMBER OF NODES

Num. Illum. 64 128 256 512 1,024
Illum. per Node 1 2 4 8 16
Number of Nodes 64 64 64 64 64
Number of Cores 1,024 1,024 1,024 1,024 1,024
# MLFMA Solutions 9,600 19,200 38,400 76,800 153,600
Reconstruction (m) 6.25 12.42 25.06 49.93 99.12



Table I shows the parallel reconstruction times with 64
nodes, whose results are shown in Fig. 1. The first row shows
the number of illuminations and the second row shows the
number of illuminations handled per node. For example, since
there are only 64 nodes, 1,024 illuminations are serialized by
handling 16 illuminations with a single node. The third and
fourth rows show the number of nodes and cores, respectively.
The fifth row shows the total number of MLFMA solutions
in the inverse solution, where there are three solutions per
illumination in each DBIM iteration. Each MLFMA solution
involves approximately one million unknowns. The last row
shows the wall times in minutes, from the beginning until the
end of the executions (including setup and disk operations).

Table I shows that the number of MLFMA solutions in-
creases linearly with the number of illuminations. As a result,
with a fixed number of nodes, the reconstruction times increase
proportional to the number of illuminations. Table II shows
reconstruction times with full distribution of illuminations
among nodes such that each node handles the forward prob-
lems of a single illumination. For example, the solutions
with 64 and 1,024 illuminations employ 64 and 1,024 nodes,
yielding 1,024 and 6,394 cores in total, respectively. With this
parallelization strategy, the number of nodes increases with the
number of illuminations as well and, due to the good scaling
of parallelization, the reconstruction times do not increase
significantly. If we consider 64-node solutions in Table I as
a baseline, Table II shows that the reconstruction with 1,024
illuminations can be efficiently partitioned among 1,024 nodes
with 93% efficiency, yielding 14.88 times speedup.

TABLE 11
SCALING WITH SINGLE NODE PER MLFMA SOLVER

Num. Illum. 64 128 256 512 1,024
Illum. per Node 1 1 1 1 1
Number of Nodes 64 128 256 512 1,024
Number of Cores 1,024 2,048 4,096 8,192 16,384
Reconstruction (m) 6.25 6.39 6.58 6.63 6.66
Speedup 1.00 1.94 3.80 7.53 14.88
Efficiency (%) 100 97 95 94 93

IV. PARALLELIZING ILLUMINATIONS AND MLFMA

The reconstructions with small number of illuminations
under-utilize the computational resources, i.e., there is not
enough (or not necessary) number of illuminations to spread
the reconstructions among large number of nodes. As a
remedy, we parallelize the forward solvers over distributed-
memory MPI processes simultaneously with illuminations.
Since MLFMA is implemented for solving two-dimensional
scattering problems from inhomogeneous dielectric profiles, a
corresponding volume integral equation is solved, and hence,
the MLFMA tree structure is well-balanced, i.e., there is
no empty cluster. Therefore a simple partitioning of the
MLFMA tree structure provides a good load balancing up to
16 processes. The BiCGStab solvers also run in parallel on
the processes for reducing MPI communications during the
iterative forward solutions.
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TABLE III
SCALING WITH SIMULTANEOUS PARALLELIZATION

Num. Illum. 64 128 256 512 1,024
Ilum. per Node 1 1 1 1 1
Nodes per MLFMA 16 8 4 2 1
Number of Nodes 1,024 1,024 1,024 1,024 1,024
Number of Cores 16,384 16,384 16,384 16,384 16,384
Reconstruction (m) 0.58 0.97 1.78 3.41 6.66
Speedup 10.78 12.80 14.07 14.48 14.88
Efficiency (%) 67 80 88 91 93

Table III shows the reconstructions with simultaneous paral-
lelization of illuminations and MLFMA among 1,024 comput-
ing nodes. For example, in order to use all the nodes with 64 il-
luminations, MLFMA employs 16 nodes, where each MLFMA
solver handles scattering problems corresponding to a single
illumination, yielding 1,024 nodes. As shown in the table, the
reconstruction with 64 illuminations is 10.76 times faster with
1,024 nodes with respect to 64 nodes, yielding parallelization
efficiency of 67%. This shows that parallelizing MLFMA
solutions is less efficient than parallelizing illuminations. This
is mainly due to the intense MPI communications performed in
each MLFMA multiplication in contrast to pleasingly parallel
nature of illuminations. Similarly, the reconstructions with
128, 256, and 512 illuminations are 12.80, 14.07, and 14.88
times faster, respectively, on 1,024 nodes rather than on 64
nodes. Since the largest reconstruction can use all the 1,024
nodes with parallelizing illuminations only, a simultaneous
parallelization is not invoked.

V. CONCLUSIONS

A set of DBIM solutions demonstrating their scalable paral-
lelization is presented. A simple parallelization partitions the
object illuminations among computing nodes, where each node
handles an equal number of illuminations. This provides good
efficiency but poor granularity. A simultaneous parallelization
employs more number of nodes by parallelizing forward
solutions among distributed-memory processes as well, which
provides better granularity but worse efficiency. The results
demonstrate that the parallel DBIM implementation scales out
well up to 1,024 nodes with 67% to 93% efficiency, depending
on the number of object illuminations, i.e., problem size.
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