
Thoughts on Massively-Parallel Heterogeneous
Computing for Solving Large Problems

Wen-mei Hwu, Mert Hidayetoğlu, Weng Cho Chew,
Carl Pearson, Simon Garcia, Sitao Huang, and Abdul Dakkak

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
w-hwu@illinois.edu

Abstract— In this paper, we present our view of massively-
parallel heterogeneous computing for solving large scientific
problems. We start by observing that computing has been the
primary driver of major innovations since the beginning of the
21st century. We argue that this is the fruit of decades of progress
in computing methods, technology, and systems. A high-level
analysis on out-scaling and up-scaling on large supercomputers is
given through a time-domain wave-scattering simulation example.
The importance of heterogeneous node architectures for good
up-scaling is highlighted. A case for low-complexity algorithms
is made for continued scale-out towards exascale systems.

I. INTRODUCTION

Since the beginning of the 21st century, we have witnessed
a major paradigm shift in science and industry innovations.
While major innovations in the 20th century were primarily
driven by physical instruments such as electromagnetic/light
sources, transceivers, and satellites, the high-valued innova-
tions in the 21st century have been primarily driven by compu-
tation methods. Examples include computational microscopy,
deep-space telescopes, telepresence, and self-driving cars.
Tremendous amounts of resources have been invested into
innovative applications such as first-principle based models,
deep learning, and cognitive computing. Many application
domains are questioning the conventional “it is too expensive”
thinking that formerly led to modeling inaccuracies and missed
opportunities. Today, we are able to incorporate rigorous
numerical methods exploiting most of the physical phenomena
to improve quality of applications. As a result, the size of
computational problems has increased rapidly in order to meet
solution fidelity and utility requirements.

II. OUT-SCALING AND UP-SCALING

Consider a time-domain wave-scattering simulation: its scal-
ing can be investigated in two ways. Scaling out involves
increasing the number of computational nodes, where each
node has a given amount of memory and processing power.
Spreading the problem among nodes allows accessing more
memory, which enables solution of problems with larger sizes
and/or finer resolutions with greater number of grid points.

Scaling up improves the single-node computational power
and speeds up each time step of a simulation or each step
of an iterative solver. This is important since the time steps
and iterative steps are inherently sequential due to causality
relationships. The saturation of single-core CPU performance
in the last decade forced the computing industry to move into

the direction of multi-core central processing units (CPUs),
many-core processors, and graphics processing units (GPUs).
The throughput oriented memory architecture of GPUs pro-
vides two to eight times speedup for many applications as
compared to multi-core CPUs.

Using a Fourier relationship, the linear time-invariant sim-
ulations can be converted into a set of frequency-domain
simulations, which are inherently parallel. This is often de-
sirable because of the nice numerical properties of frequency-
domain methods, e.g., stability, accuracy, etc. At first glance,
it may seem like a good idea to distribute the solutions
at different frequencies among the nodes and have a very
efficient out-scaling; however, then we immediately run into
a load-balancing problem. That is because the low-frequency
solutions often require less computation than high-frequency
solutions, i.e., the high-frequency problems require finer grids
(with more unknowns) than the lower-frequency problems.
The load-balancing can be improved with serializing the
solutions at lower frequencies and parallelizing those at higher
frequencies. Nevertheless, it is a difficult task to achieve high
efficiency with this approach.

The scenarios given above highlight the importance of
up-scaling for computational problems. Often times, some
serialization of the algorithm on each node cannot be avoided,
and consequently, the simulation time heavily depends on the
per-node computational power.

III. FAST ALGORITHMS FOR LARGE PROBLEMS

Today, we have effective computational methods for many
high-value applications, except some such as computer vision,
natural language dialogue, stock trading, and fraud detection.
The advances in computer hardware allow us to use brute-force
methods which employ physically sound and mathematically
rigorous formulations that do not make any fundamental
approximation. This provides numerical algorithms flexibil-
ity and applicability, yielding solution of arbitrary problems
whose analytical solutions are not available.

Availability of rigorous methods for practical applications is
a result of not only the computer power we have today, but also
fast (low-complexity) algorithms with O(N) or O(N logN)
computational complexities that have been developed in the
past 20 years. These algorithms, such as multigrid meth-
ods, fast multipole methods, and hierarchical matrix methods
provide solutions of many science and engineering problems

978-1-5386-1732-8/17/$31.00 c©2017 IEEE 67

which were previously thought to be intractable. It would be a
mistake to depend solely on computer power and paralleliza-
tion for solving large problems. Without fast algorithms, even
the world’s largest supercomputers would never be able to
solve even the modest-sized problems that can now be solved
with low-complexity algorithms on a powerful workstation.

The mentioned fast algorithms commonly follow iterative,
i.e., Krylov subspace, and multilevel approaches, often oper-
ating on a tree structure. Speaking of multilevel tree structure,
once promising recursive divide-and-conquer algorithms in
early 90s are obsolete today due to finite function call stack of
the current computer architectures. Today we solve problems
with several billion unknowns [1] with loops operating on
extremely-large data structures, which requires extra pro-
gramming care, and with conservative memory allocations to
prevent integer overflows and accumulation of round-off errors
[2].

IV. IMPROVING FIRST-PRINCIPLE-BASED MODELS

Some areas still use first-principle models which make crude
approximations because rigorous methods are considered too
expensive. Applications with approximations that cause inac-
curacies and lost opportunities include medical imaging, earth-
quake modeling, weather modeling, astrophysics modeling,
precision digital manufacturing, and combustion modeling.

Take ultrasound imaging, for example. It is one of the least
expensive medical imaging modalities, whose hardware can
be found in almost every doctor’s office. It uses a simple
acoustic phased-array transducer to scan the field of view,
and uses specialized hardware to provide real-time brightness
maps. Ultrasound imaging is cheap and effective for practical
purposes; however, it does not use all the information in the
collected field, and therefore the images are not fine enough to
provide images for more demanding applications. An inverse
scattering approach, however, can employ iterative nonlinear
solution methods to reconstruct a quantitative profile of the
imaging domain. In each iteration, it is not unusual to solve
hundreds of forward scattering problems to be able to update
the profile correctly, which means astronomical amount of
computation. Consequently, the inverse scattering approach for
imaging was considered as impractical before. Recently, there
are attempts to change this perception using low-complexity
fast algorithms running on large supercomputers with hetero-
geneous nodes [3], which has the potential to make an impact
on medical imaging. This example also highlights the need of
multidisciplinary work combining computational and domain-
specific expertise to make impact on certain fields.

V. NEXT-GENERATION COMPUTING

Significant emphasis has been placed on the path to exascale
computing in the high-performance computing community.
This is to support the current and increasing demands for
computing power to solve large real-world problems. Cutting-
edge supercomputers like NCSA Blue Waters [4] and ORNL
Titan [5] are composed of heterogeneous nodes with CPUs and

GPUs, which typically allow for a two to eight times whole-
application speedup over homogeneous computing nodes.
These heterogeneous nodes allow more application tasks to
be executed on the appropriate power-efficient hardware, ulti-
mately leading to higher performance.

We expect the next wave of systems, which will be de-
ployed in the 2019 timeframe, to have two or three times
more computing throughput than of today’s systems. Like
the current systems, future systems will undoubtedly consist
of general-purpose latency-oriented processors (like CPUs),
throughput-oriented processors (like GPUs and many-core pro-
cessors), and also include reconfigurable hardware (like field-
programmable gate arrays), and dense non-volatile memory
technologies (like flash disks). Most likely, the future nodes
will be “fatter” in the sense that they will involve multiple
GPUs and more amount of memory. Effectively and coherently
utilizing this fabric of technologies will be a significant
challenge moving forward.

The fast algorithms will play a critical role since a doubling
or tripling of computing throughput would only be reflected
directly to the problems size with low-complexity algorithms.
Unfortunately, by their nature, the fast algorithms feature
reduced data reusage, and therefore their performance will be
limited by the memory bandwidth for most of the algorithms.
It will be challenging to increase the data reuse of the fast
algorithms, however. New computing architectures that better
positions computing devices in the hierarchical memory archi-
tecture of heterogeneous nodes will help resolve the memory-
bandwidth bottleneck.

VI. CONCLUSIONS

Heterogeneous computing plays a critical role to have
good out-scaling and up-scaling efficiencies for solving large
scientific problems. We expect the computing throughput will
be doubled or tripled in the next two years, and the fast
algorithms will obtain the most benefit of this improvement.
It will be crucial to use the high-memory throughput of GPUs
to obtain maximum benefit.

ACKNOWLEDGMENT

We acknowledge support of NVIDIA GPU Center of Ex-
cellence and NCSA Petascale Application Improvement Dis-
covery Program grants, and NSF grant EECS-1609195.

REFERENCES

[1] B. Michiels, J. Fostier, I. Bogaert, D. de Zutter, “Full-wave simulations
of electromagnetic scattering problems with billions of unknowns,” IEEE
Trans. Antennas Propag., vol. 63, no. 2, pp. 796–799, Feb. 2015.

[2] L. Landesa et al., “Successes and frustrations in the solution of
large electromagnetic problems in supercomputers,” Applied Compu-
tational Electromagnetics Society Symp. (ACES 2017), Florence, Italy,
Mar. 2017.

[3] M. Hidayetoğlu, C. Pearson, W. C. Chew, L. Gürel, and W.-M. Hwu,
“Large inverse-scattering solutions with DBIM on GPU-enabled su-
percomputers,” Applied Computational Electromagnetics Symp. (ACES
2017), Florence, Italy, Mar. 2017.

[4] National Center for Supercomputing Applications, Urbana, IL, USA
“Blue Waters,” [online] Available: https://bluewaters.ncsa.illinois.edu,
Accessed on: May 8, 2017.

[5] Oak Ridge National Laboratory, Oak Ridge, TN, USA Titan, [online]
Available: https://www.olcf.ornl.gov/titan/, Accessed on: June 8, 2017.

68

