Innovative Applications and Technology Pivots —
A Perfect Storm in Computing

Wen-mei Hwu
Professor and Sanders-AMD Chair, ECE, NCSA

University of lllinois at Urbana-Champaign

with
|zzat El Hajj, Liwen Chang, Simon Garcia, and Carl Pearson
The _
ECE ILLINOIS KN Tirrinors
NCSA

Agenda

* Revolutionary paradigm shift in applications

* Post-Dennard technology pivot - heterogeneity

* An example of positive application-technology spiral

* Engineering high-efficiency software for heterogeneous computing

ECE ILLINOIS

IirriNnoOTs

A major paradigm shift

" |n the 20th Century, we were able to understand, design, and
manufacture what we can measure
e Physical instruments and computing systems allowed us to see farther, capture

more, communicate better, understand natural processes, control artificial
processes...

IirriNnoOTs

ECE ILLINOIS

A major paradigm shift

" |nthe 21st Century, we are able to understand, design, and create what
we can compute

* Computational models are allowing us to see even farther, going back and
forth in time, learn better, test hypothesis that cannot be verified any other
way, create safe artificial processes...

IirriNnoOTs

ECE ILLINOIS

Examples of Paradigm Shift
20t Century 215t Century

= Small mask patterns = Optical proximity correction

= Electronic microscope and Crystallography ® Computational microscope with initial

with computational image processing conditions from Crystallography

= Anatomic imaging with computational " Metabolic imaging sees disease before
image processing visible anatomic change

= Teleconference = Tele-emersion

= GPS = Self-driving cars

IirriNnoOTs

ECE ILLINOIS

Diving deeper into computational microscope

* Large clusters (scale out) allow simulation of biological systems of
realistic space dimensions
e 0.5A (0.05 nm) lattice spacing needed for accuracy
* Interesting biological systems have dimensions of mm or larger
* Thousands of nodes are required to hold and update all the grid points.

* Fast nodes (scale up) allow simulation at realistic time scales
* Simulation time steps at femtosecond (101> second) level needed for accuracy
* Biological processes take miliseconds or longer

e Current molecular dynamics simulations progress at about one day for each
10-100 microseconds of the simulated process.

TirriNnors

ECE ILLINOIS

Blue Waters Science Breakthrough Example

= Determination of the structure of the HIV
capsid at atomic-level

= Collaborative effort of experimental groups at
the U. of Pittsburgh and Vanderbilt U., and the
Schulten’s computational team at the U. of
lllinois.

= 64-million-atom HIV capsid simulation of the
process through which the capsid
disassembles, releasing its genetic material

= 3 critical step in understanding HIV infection
and finding a target for antiviral drugs.

ECE ILLINOIS

Atomic
structur
of the \H)S
patho s,
protei)u(

THE FIRST CROSS] NG THE

l.l(‘-H'T BORDFRS T-\R(FT s
[t puarseddr of the meast [nser (e

IirriNnoOTs

Post-Dennard technology pivot -
heterogeneity

ECE ILLINOIS

Dennard Scaling of MOS Devices

5 GATE VOLTAGE [v] a3 GATE WOLTASE [v]
T 20 —— ' 3
E. E 1} -e008
- ___ 1ox = 1000A o
8 T 15 L =W=Su 5 o2 2 L' =WE
z | £ | - Vaip =~ IV
= | Vgul® =TV = sub
Z os- b Wy =085y = alf 2 v, 0TIV
o i e —————— = =
= | =
5 — 1
Q= T E— i 1 - 1 i i [}
o 5 0 15 20 o - 1 = 3 E
DRAIN vOLTAGE [v] DRAIN VOLTAGE [V]

JSSC Oct 1974, page 256
In this ideal scaling, as L — o*L Pas

* Vop — 00*Vpp, C— o*C, i — or*i

* Delay = CV,,/l scalesby a,sof — 1/«

 Power for each transistor is CV2*f and scales by o?
 keeping total power constant for same chip area

ECE ILLINOIS

IirriNnoOTs

Frequency Scaled Too Fast 1993-2003

Clock Frequency (MHz)

10! I I I I I I I I I
8 87 89 91 93 95 97 99 01 03 05

ECE ILLINOIS DicriNnors

Total Processor Power Increased

(super-scaling of frequency and chip size)

ECE ILLINOIS DicriNnors

Post-Dennard Pivoting

* Multiple cores with more moderate clock frequencies

" Heavy use of vector execution

" Employ both latency-oriented and throughput-oriented cores
= 3D packaging for more memory bandwidth

IirriNnoOTs

ECE ILLINOIS

Blue Waters Computing System
Operational at lllinois since 3/2013 49,504 CPUs -- 4,224 GPUs

— — =

—

S L el

S —_— - - T S AR BT TEES E———E T S e S—

12.5 PF e
1.6 PB DRAM
SZSOM 120+ Gb/sec | 100 GB/sec
B B R % §
WAN Spectra Logi: 300 PBs Sonexion: 2 PBs

ECE ILLINOIS TirriNnors

CPUs: Latency Oriented Design

= High clock frequency

" |Large caches

e Convert long latency memory accesses ALU ALU
Control
to short latency cache accesses

ALU ALU

C Dl |

= Sophisticated control

* Branch prediction for reduced branch
latency

gy MATRONIEAIEG G e
latency

= Powerful ALU

e Reduced operation latency

IirriNnoOTs

ECE ILLINOIS

GPUs: Throughput Oriented Design

" Moderate clock frequency

= Small caches
e To boost memory throughput

= Simple control
* No branch prediction
* No data forwarding

" Energy efficient ALUs
* Many, long latency but heavily pipelined
for high throughput

= Require massive number of threads
to tolerate latencies

IirriNnoOTs

ECE ILLINOIS

Applications Benefit from Both CPU and GPU

"= CPUs for sequential parts where = GPUs for parallel parts where

latency matters throughput wins
* CPUs can be 10+X faster than GPUs GPUs can be 10+X faster than CPUs
for sequential code for parallel code

IirriNnoOTs

ECE ILLINOIS

Initial Production Use Results

Application Description Application Speedup
100 million atom benchmark with Langevin dynamics and
NAMD PME once every 4 steps, from launch to finish, all I/O 1.8
included
Lattice QCD parameters: grid size of 483 x 512 running at the
Chroma QCbp) 5 & 2.4
physical values of the quark masses
Full run Graphite 4x4x1 (256 electrons), QMC followed b
QMCPACK P () Q Y 2.7
VMC
Collisionless N-body stellar dynamics with multipole
ChaNGa -y Y : P 2.1
expansion and hydrodynamics
Anelastic wave propagation with staggered-grid finite-
AWP propag g8 g 1.2

difference and realistic plastic yielding

ECE ILLINOIS IirriNnots

An example of positive
application-technology spiral

IirriNnoOTs

ECE ILLINOIS

DEEP LEARNING IN COMPUTER VISION

ImageNet

i'.
s
30%

0% ® Traditional CV
10% Deep Learning

100%
90%
80%
70%
60%
50%
40%

0%
010 2011 2012 2013 2014 2015 2

Traditional Computer Vision Deep Learning Object Detection Deep Learning Achieves
Experts + Time DNN + Data + HPC “Superhuman” Results

Slide courtesy of Steve Oberlin, NVIDIA

DIFFERENT MODALITIES OF REAL-WORLD DATA

Images/video
Image Detection
. -
i 3
z = R
pudic ol L
o B Y gl
Audio Audio features Speaker ID
N
A= PP Text classification, machine
Text = m—) N m=== translation, information
oo it retrieval,
Text Text features

Slide courtesy of Andrew Ng, Stanford University 20

A long way to go towards cognitive computing

¥ Social Sciences
Use the cartoon to answer the next TWO guestions.

: Taken from
C Unemployment http://www.ode. state.

chlearn/testing/samp
ocsci_sampletest en

Without his raise, which woall typify Phil's bebavios in the marketplice?
A, He will increase his interest for hagher priced ibems.
B, He will increase his demand for higher priced items.
C He will decrease his demand for lower peiced substitutes.

D, He will increase his demand for lower priced substitutes.

ECE ILLINOIS

More Heterogeneity Is Coming

" Beyond traditional CPUs and GPUs
* FPGAs (e.g., Microsoft FPGA cloud)
* ASICs (e.g., Google’s TPU)

" Beyond traditional DRAM
» Stacked DRAM for more memory bandwidth
* Non-volatile RAM for memory capacity
* Near/in memory computing for reduced power used in data movement

IirriNnoOTs

ECE ILLINOIS

Some Lessons Learned

* Throughput computing using GPUs can result in 2-3X end-to-end
application-level performance improvement

* GPUs, big data and deep learning have formed a positive spiral for the
industry

* GPU computing has so far had narrow but deep impact in the
application space
* Data movement overhead and small GPU memory
e Unified memory, HBM, NVLink, and HSA-style systems will help
* Low-level programming interfaces with poor performance portability

TirriNnors

ECE ILLINOIS

Engineering h

igh-ef

heterogeneol

ECE ILLINOIS

S COIT

puting

iciency software for

IirriNnoOTs

Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

Granularity

of Parallelism

Coarsening

4 W4 W4 N\)
Levels of Memory Resource Micro-
Hierarchy Characteristics Sizes architecture

_ /' /' VAN J

4 N\ [N\ [N\)
Codelet Automatic Data Autotunin Algorithmic

Composition Placement & Choice
N VAN VAN L J

.I_Il.[.IN{:}]S

Coarsening Scheduling Alternatives

O
Depth First Order o 0 Breadth First
(DFO) Scheduling A <‘> Order (BFO)
] Scheduling

O
DFO Scheduling BFO with
with Vectorization Vectorization
(time progresses as color (time progresses as color
gets darker) gets darker)

bobbb66. 6

IirriNnoOTs

ECE ILLINOIS

Performance Results

EAMD MEIntel BLC(novec.) BLC

0.8 -

0.6 -

Speedup
rmalized to fastest)

i
0.4 -

(no

0.2 -

I A AR A A A T

ctcp hst hw kmns lkct Imd lud mrig mrig nw pbfs pf rbfs sad sc sgm spm

< 4+ 1]

tpcf

Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations
Kim et al., CGO’15

geo
?.t‘-ﬁaﬂ-l' .

u Iz
b5 1 Tl

ECE ILLINOIS IirriNnots

Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

-

Granularity
of Parallelism

_

~N

J

-

Coarsening

_

~

J

Levels of
Hierarchy

Codelet
Composition

4 N\ [N\ [)
Memory Resource Micro-
Characteristics Sizes architecture
_ VAN VAN J
4 N\ [N [)
Automatic Data . Algorithmic
Placement Autotuning Choice
_ VAN VAN),

.I_Il.[.IN{:}]S

Hierarchical Compute Organization of Devices

CPU GPU
1. Process 1. Grid
2. Thread (vector-capable) 2. Block
3. Vector Lane 3. Warp
4. Instruction-level Parallelism 4. Thread
5. Instruction-level Parallelism

ECE ILLINOIS IirriNnots

Hierarchical Compute Organization of Devices

CPU nt = omp_get num_threads();
tile = (len + nt - 1)/nt;
#pragma omp parallel
1. Process ;
j = t thread 5
2. Thread (vector-capable)) amp-getthread_nun()

4. |nstruction-level Parallelism

partial[j] = accum;

}

sum = 0;

for(int j = 0; j < nt; ++j) {
sum += partial[j];

}

return sum;

ECE ILLINOIS Oirrinors

Hierarchical Compute Organization of Devices

GPU

tile = (len + gridDim.x - 1)/gridDim.x;
sub_tile = (tile + blockDim.x - 1)/blockDim.Xx;

accum = O .
1. Grid
2. Block
3. Warp
tmp[threadIdx.x] = accum;
__syncthreads(); 4. Thread
for(unsigned s=1; s<blockDim.x; s *= 2) {
if(id >= s) 5. Instruction-level Parallelism

tmp[threadIdx.x] +=
tmp[threadIdx.x - s];
__syncthreads();
}
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial

ECE ILLINOIS Oirrinors

Tangram: Codelet-based Programming Model

__codelet
int sum(const Array<l,int> in) {
unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {
accum += in[i];

}

return accum;
} (a) Atomic autonomous codelet

__codelet _ coop _ tag(kog)

int sum(const Array<l,int> in) {
__shared int tmp[coopDim()];
unsigned len = in.size();
unsigned id = coopIdx();

tmp[id] = (id < len)? in[id] : e;
for(unsigned s=1; s<coopDim(); s *= 2) {
if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

(b) Atomic cooperative codelet

ECE ILLINOIS

__codelet _ tag(asso_tiled)
int sum(const Array<l,int> in) {
__tunable unsigned p; 19 ,
unsigned len = in.size(); Riniaiivivieiuiaieie
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,
p,sequence(0,tile,len),sequence(l),sequence(tile,tile,len+l))));

(c) Compound codelet using adjacent tiling

__codelet _ tag(stride_tiled)
int sum(const Array<l,int> in) {
__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,
p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,1len+l))));

(d) Compound codelet using strided tiling

TirriNnors

Tangram: Composition Example

. ———— -

IirriNnoOTs

ECE ILLINOIS

Tangram Results

1

r)

© o o o
A N o0 L

bette

-2 0.5

er

<04

® —

h

(

Normalized Performance

©c o 0o
, N W
|
{

o
|

SCan spmv

ECE ILLINOIS

dgemm

kmeans

bfs

Fermi (Reference)

M Fermi (Tangram)

Kepler (Reference)

m Kepler (Tangram)

CPU (Reference)

® CPU (Tangram)

IirriNnoOTs

Need for Run-time Selection

e Statically determining best algorithm could be difficult or infeasible
* Sometimes it is input dependent

* Even a robust compiler or an expert could select suboptimal
sequence of optimization

» A catastrophic performance loss could happen

ECE ILLINOIS IirriNnoTs

DySel Runtime Selects the Best Version

* Application or compiler provides multiple versions
* Typically 4-10

DySel

* Runtime performs the final selection
* Apply micro-profiling to sample the performance of each candidate

* Use a small subset of the actual workload per candidate
e Contributes to final result

* Profile candidates concurrently
* Reduces profiling overhead

e Incurs less than 8% of overhead in the worst observed case

TirriNnots

ECE ILLINOIS

Productive Profiling Mode

* Computation in profiling also contributes to the final output

& Probational Period = & Tenured Period -
Version A | [t) \
rofil compute -
U S - {0, -
Output (
Version B \/) \/)

Workload Space -

TiLrriNnors

ECE ILLINOIS

Relative@xecution®imeBver®racle?

(lowerfstbetter)

Case Study: Input-dependent Optimizations

* Best optimizations could be input-dependent

8'63%.“605'635

3.008 § = Oraclel
\ = Synch
2.500m \
\ Il Async(best@nitial@
§ selection)
2008 \ 7 Async(worstinitialR
\ selection)
1.50F \ = scalar,@DFOR
W scalar,BFOR
1.00m7 iz vector,@DFOR
0.50 = vector,BFOR
B \WorstR
0.00E-

random@natrix diagonal@natrix

(a) CPU

ECE ILLINOIS

Relative@xecution®imeBver®racled

(lowertstbetter)

4.733 22.73E22.733

M Oracle®

= Synch@

lll Async(best@nitial@

selection)

% Async(worsel@nitialz

selection)®

A Scalari2

= Vector®

W \WorstR

=\

random@@matrixz

diagonal@atrix

(b) GPU

TirriNnots

Conclusion and Outlook

* Applications have very large appetite for more computing power
* Both larger scale clusters and faster devices

* Heterogeneity has become the norm for all hardware systems
« HPC community are currently seeing about 2-3x application speedup
* Recent positive spiral between deep learning and GPU computing
* More positive spirals are yet to come

* Performance portability is critical for broad software adoption

* There is critical need for programming systems with strong support for
portability

* Performance portability involves several dimensions of technical challenges

* Unfortunately, vendors have not been interested in solving this problem.

TirriNnors

ECE ILLINOIS

Thank you!

ECE ILLINOIS IirriNnots

Backup Slides

ECE ILLINOIS IirriNnots

Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

4 W4 W4 W4 N\)
Granularity Levels of Memory Resource Micro-
of Parallelism Hierarchy Characteristics Sizes architecture
_ /' /' /' VAN J
4 W4 W4 W4 N\)
Coarsenin Codelet Automatic Data Autotunin Algorithmic
& Composition Placement 8 Choice
_ /' /' /' VAN J

IirriNnoOTs

Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

Granularity

of Parallelism

Coarsening

4 W4 W4 N\)
Levels of Memory Resource Micro-
Hierarchy Characteristics Sizes architecture

_ /' /' VAN J

4 N\ [N\ [N\)
Codelet Automatic Data Autotunin Algorithmic

Composition Placement & Choice
N VAN VAN L J

.I_Il.[.IN{:}]S

Coarse-grain CPU threads Fine-grain GPU threads

TYPYTYVYIYYYTY

» =
gl e

bbobbb bbbbbb. b

ECE ILLINOIS IirriNnots

Coarsening Scheduling Alternatives

O
Depth First Order o 0 Breadth First
(DFO) Scheduling A <‘> Order (BFO)
] Scheduling

O
DFO Scheduling BFO with
with Vectorization Vectorization
(time progresses as color (time progresses as color
gets darker) gets darker)

bobbb66. 6

IirriNnoOTs

ECE ILLINOIS

OpenCL/CUDA to CPU Compilers

Basic Coarsening Locality-aware Scheduling

Vectorization

(DFO) (DFO vs. BFO)

AMD

MCUDA

SnuCL

Karrenberg
& Hack

pocl
Intel

MxPA

ECE ILLINOIS Tirrinors

Performance Results

EAMD MEIntel BLC(novec.) BLC

0.8 -

0.6 -

Speedup
rmalized to fastest)

i
0.4 -

(no

0.2 -

I A AR A A A T

ctcp hst hw kmns lkct Imd lud mrig mrig nw pbfs pf rbfs sad sc sgm spm

< 4+ 1]

tpcf

Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations
Kim et al., CGO’15

geo
?.t‘-ﬁaﬂ-l' .

u Iz
b5 1 Tl

ECE ILLINOIS IirriNnots

Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

-

Granularity
of Parallelism

_

~N

J

-

_

Levels of
Hierarchy

~N

J

-

Coarsening

_

~

J

-

_

Codelet
Composition

~

J

Memory
Characteristics

Automatic Data
Placement

-

Resource
Sizes

~N

-

_

Micro-
architecture

~N

J

-

_

Autotuning

~

J

-

_

Algorithmic
Choice

~

J

.I_Il.[.IN{:}]S

Data Placement Options

CPU GPU
= Global memory = Global memory
= Caches (data tiling) » Caches (data tiling)
= Registers = Registers
+

= Scratchpad memory
= Constant memory

= Jexture memory

IirriNnoOTs

ECE ILLINOIS

Rule-based vs. Model-based

* Rule-based (e.g., Jang et al.)
* Heuristics on the memory access pattern

* Model-based (e.g., PORPLE)

* Create a model the memory subsystem
* Slower but more accurate

IirriNnoOTs

ECE ILLINOIS

Tangram’s Rule-based Data Placement

[Container]

istics

Memory Access
Characterist

[Transpose |

)

candidate for on-chip memory

yes yes yes yes

Texture

Memory System
Features

TirriNnors

ECE ILLINOIS

Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

-

Granularity
of Parallelism

_

~N

J

-

_

Levels of
Hierarchy

~N

J

(")

Memory
Characteristics

_ J

-

Coarsening

_

~

J

-

_

Codelet
Composition

~

J

(")

Automatic Data
Placement

- J

Resource
Sizes

Autotuning

-

Micro-
architecture

~N

1\ J
4)
Algorithmic
Choice
g J

.I_Il.[.IN{:}]S

GPU Tuning: Scan Case Study

100%
90%
80%
70%
60%
50%
40% -
30% -
20% -
10% -

0% -

Performance
(% of best, higher is better)

Tuned for Fermi Tuned for Fermi Tuned for Kepler Re-optimized for Kepler

Run on Fermi Run on Kepler
> > >

Retune Re-optimize

Architecture
Upgrade

ECE ILLINOIS Oirrinors

Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

4 N\ N\ N\)
Granularity Levels of Memory Resource
of Parallelism Hierarchy Characteristics Sizes
1\ VAN VAN VAN J
4 N\ [N\ [N\ [)
Coarsenin Codelet Automatic Data Autotunin
& Composition Placement &
N VAN VAN VAN J

Micro-
architecture

Algorithmic
Choice

.I_Il.[.IN{:}]S

Scratchpad atomics performance (stream compaction)

10.0=

-©-GTXB80FFermifGF110)E

9.0r
=E-K40c{Keplerf@K110)@

8.0m
~A-GTXB80HMaxwelllTEM204)

6.0

"\

5.0

4.0

Execution@imedms)&

3.0

2.0@
0.7782[

o

T T T T T T T T T T T
n O n O mn O 1n O o uwn
< D N W O N N 0 a O

0.0 T T T T T T T
n © 1 © 1N O
— 4 N N o o

850

Fraction@filtered@temsl2

ECE ILLINOIS IirriNnots

Motivation Backup

ECE ILLINOIS IirriNnots

X PAC ., THE CENTER FOR EXASCALE SIMULATION
. OF PLASMA-COUPLED COMBUSTION

* Codesign among diverse areas will be required to reach exascale
* Every level of the computational stack is a potential bottleneck.

e XPACC COde WI” need to run 99°999 99979 99 999 9999 999999 99999 ¢

- Exd XKxk RE R
efficiently and portably on next- %‘5%%@ %%% %ﬁ% %%
generation heterogeneous REIR TR IR PRI T 3 O 7. 00 S T FE B 585888
platforms (CPUs, GPUs, Xeon-

Phis)
Blue Waters: &
ECE ILLINOIS TirriNors

Initial Production Use Results

* NAMD

* 100 million atom benchmark with Langevin dynamics and PME once every 4 steps,
from launch to finish, all I/O included

* 768 nodes, Kepler+interlagos is 3.9X faster over Interlagos-only
e 768 nodes, XK7 is 1.8X XE6

e Chroma

 Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the
quark masses

* 768 nodes, Kepler+interlagos is 4.9X faster over Interlagos-only
e 768 nodes, XK7 is 2.4X XE6

* QMCPACK
* Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
e 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
e 700 nodes, XK7 is 2.7X XE6

TirriNnors

ECE ILLINOIS

Blue Waters Science Production Applications

* Work with science teams to effectively use GPUs in their production code.

* ChaNGa — cosmological simulation, University of Washington
 AWP — earthquake simulation, Southern California Earthquake Center

e Significant speedup by tuning kernels to specific GPU characteristics
* Real-world opportunities for performance portability

GPU Kernel Optimizations

__m
Baseline 1.35
Optimized 1.16
“ Baseline 61.6 1.33
Optimized 43.3

ECE ILLINOIS IirriNnoTs

Levels of GPU Programming Interfaces

Par4all, Tangram...

Implementation manages GPU threading and synchronization
invisibly to user

Same GPU execution model (but less boilerplate)

‘

ECE ILLINOIS IirriNnots

Portability- CPU vs. GPU Code Versions

" Maintaining multiple code versions is extremely expensive
= Most CUDA/OpenCL developers maintain original CPU version

" Many developers report that when they back ported the
CUDA/OpenCL algorithms to CPU, they got better performing code

* Locality, SIMD, multicore

" MxPA is designed to automate this process (John Stratton, Hee-Seok Kim,
|zzat El Hajj)

IirriNnoOTs

ECE ILLINOIS

Performance Library

" A major qualifying factor for new computing platforms
 MKL, BLAS, CUSPARSE, Trust, FFT, OpenCV, CUDNN, etc.
e Currently redeveloped and hand-tuned for each HW type/generation

" Exa-scale HW expected to have increasing levels of heterogeneity,
parallelism, and hierarchy
* Increasing levels of memory heterogeneity and hierarchy
* Increase SIMD width and types/number of cores

" Performance library development process must keep up with the HW
evolution and diversification

e Performance portability

ECE ILLINGIS TirriNnors

107 | htel 48-Core [FTFTRT . Transistors
Frototype BREE R D (Thousands)

'1'|:|E o i AMD 4-Core. REcccecd F'ElI’EEHE{ Proc
; Opteron Ferformance

10 Intel Sequential
Pentium £ FProcessor
4 : Performance
21984 Frequency
3 : {MH:]
10°F mips Rzk ;
2) : Typical Power
-1.|:| L 'I' L L B T ik - {Wﬂttﬁ] e
: Number
10 of Cores
& & - - :
10° F » -

1975 1880 18985 1880 1885 2000 2005 2010 2015

™~

Data partislly collected by M. Horowitz, F. Laboms, O. Shacham, K. Olukootun, L. Hammaond

Prepared by C. Batten - School of Electrical and Computer Engineering - Cornell
University - 2005 - retrieved Dec 12 2012 -
http:/ fererw.csl.cornell.edufcoursesfece5950/ handouts/fece5950-overview.pdf

IirriNnoOTs

ECE ILLINOIS

1 core 4 cores

pentium’
EXTREME
EDITION

2 cores

TirriNnors

ECE ILLINOIS

SoC (2 cores)

-

., SoC (6 cores)

Qualcommr

snapdragon

1 core 4 cores SoC (1 core) 6 cores

many-core
' A N
intelot inside™
= ~'.__W
_ Xeon Phi_)
EEEE—— 2010 2012 2014
2005 2010 2011 2012
inte} ge <A NVIDIA.
: = AMD Fusion /
v Fermi
P many-core NVIDIA
EDITION Maxwell
APU (1% gen) many-core many-core

2 cores many-core

ACCELERATED

A-SERIES |

PROCESSOR

AMD

ECE ILLINOIS " Wi o o s

Portability Backup

ECE ILLINOIS IirriNnots

Granularity Tuning (OpenCL)

Results of thread coarsening for Parboil benchmarks(written for NVIDIA SIMT GPUs)

on AMD Radeon HD6990 (VLIW-5)

Kernel execution time speedup over baseline
AZF W
A e
S
&
2Lk
.00]]
=m all large defaulk large =rm all large =mall medium =m all medium
cutcp cutcp histo™ histo™ m ri-q ¥ m ri-g ¥ SoEmMmm |(sgemm™ F | sgemm ™ =

* Not a single kernel
** Results from more than one dimension coarsening

Results compiled using MulticoreWare’s SlotMaximizer

ECE ILLINOIS

IirriNnoOTs

* Reduction — CPU vs. GPU (Part 1)

GPUs favor inter-thread locality

CPUs favor intra-thread locality (within Work Groups)

__—
O
A
]

=
w Tree-shape
parallel reduction
4
[

IirriNnoOTs

ECE ILLINOIS

e Reduction — CPU vs. GPU (Part 2)

CPU 2-level hierarchy GPU 4-level hierarchy
| [[[N v s o s S s A S 5 S D s S AN o s s OO v S s i BN S B 5 s |
B R R PEEOEDDODLD - OOOER
N X X = . Y gy
— - - -
D - - JJa I
1 SN G G
- 3 3 3 + Collect from Work
- - - -
- Group partial
w results
3
-

IirriNnoOTs

ECE ILLINOIS

* CPU Parameter Tuning

Mandelbrot performance with vector width

M Scalar mSSE m AVX

Speedup
O B N W & U1 O N

128 256 512 1024 2048 4096
Image Size

Results courtesy of intel.com

ECE ILLINOIS Dirrinors

GPU Parameter Tuning

Non-portable tile sizes

100%
90%
80%
70%
60%
50% -
40% -
30% -
20% -
10% -

0% -

68%

58%

Relative Performance

[[
Original version tuned for Tesla Tiling parameters retuned for

Fermi
(all running on Fermi GPU)

ECE ILLINOIS Oirrinors

GPU Parameter Tuning

Non-portable tile sizes

100%
90%
80%
70%
60%
50% -
40% -
30% -
20% -
10% -

0% -

68%

58%

Relative Performance

Original version tuned for Tesla Tiling parameters retuned for Tiling restructured

Fermi
(all running on Fermi GPU)

ECE ILLINOIS Oirrinors

Execution Time int32 (ms)

Bitonic Sort 35

30
i) . i _ 25 -
int swap(int x, int mask, int dir)
{ 20 -
int v = ___shfl_xor(x, mask); 15 -
N return x < y == dir ? yv : Xx; 10 _
5 |
X = swap(x, O0x01, bfe(laneid, 1) A bfe(laneid, 0)); // 2 0 -
x = swap(x, 0x02, bfe(laneid, 2) A bfe(laneid, 1)); // 4 SMEM SHFL
x = swap(x, O0x01, bfe(laneid, 2) A bfe(laneid, 0)); (unsafe)
x = swap(x, 0x04, bfe(laneid, 3) A bfe(laneid, 2)); // 8
x = swap(x, 0x02, bfe(laneid, 3) A bfe(laneid, 1)); SMEM per Block (KB)
X = swap(x, Ox01, bfe(laneid, 3) A bfe(laneid, 0)); a5
x = swap(x, 0x08, bfe(laneid, 4) A bfe(laneid, 3)); // 16 -
x = swap(x, 0x04, bfe(laneid, 4) A bfe(laneid, 2)); 4 -
x = swap(x, 0x02, bfe(laneid, 4) A bfe(laneid, 1)); 3.5 -
x = swap(x, O0x01, bfe(laneid, 4) A bfe(laneid, 0)); 3
x = swap(x, 0x10, bfe(laneid, 4)); // 32 2 5 -
x = swap(x, O0x08, bfe(laneid, 3)); o
x = swap(x, O0x04, bfe(laneid, 2)):; _——
x = swap(x, O0x02, bfe(laneid, 1)):;)
X = swap(x, Ox01, bfe(laneid, 0)):; Ll
0.5 -
J/ int bfe(int i, int k): Extract k-th bit from i 0 - .]
SMEM SHFL
S/ PTX: bfe dst, src, start, len (see p.8l, ptx_isa_3.1) (unsafe)

Slide courtesy of nvidia.com

TirriNnors

ECE ILLINOIS

C/FORTRAN CUDA, OpenCL

OpenMP, TBB,
+ SIMD Verilog, VHDL

Pthreads, Cilk... ’
Intrinsics

cpu L Muicors G &

ECE ILLINOIS Oirrinors

7

[C/FORTRAN

OpenMP TBB
Pthreads, Cilk...

+ SIMD
Intrinsics

7

[Verilog, VHDL

~

cpu L Muicors G

ECE ILLINOIS Oirrinors

* Locality-centric work-item scheduling

e Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

+SIMD } [Verilog, VHDL

OpenMP TBB
Pthreads, Cilk...
[Intrinsics

CUDA, OpenCL

7

ECE ILLINOIS IirriNnots

Tangram

[C/FORTRAN } [CUDA, OpenCL }

OpenMP, TBB,
Pthreads, Cilk...
Intrinsics

|

+ SIMD } Verilog, VHDL

ECE ILLINOIS Titrinors

Tangram Backup

ECE ILLINOIS IirriNnots

Devices have different
architectural hierarchies

ECE ILLINOIS Dirrinors

Computation Codelets

Decomposition Codelets

/AV

Programmer writes
architecture-neurtral
computations and
decomposition rules

ECE ILLINOIS Dirrinors

Computation Codelets

Decomposition Codelets

AV

Compiler maps o0 00 00 00
o0 00 00 00

computations

to each level of
the hierarchy...

ECE ILLINOIS Dirrinors

Computation Codelets

Decomposition Codelets

AV

...and
decomposition
rules between

each level

ECE ILLINOIS Dirrinors

DySel Backup

ECE ILLINOIS IirriNnots

DySel

* Pronounced as diesel/'di:zal/

* Imply low-cost and high-efficiency
* Diesel was cheaper than regular gas, when we submitted the paper... :v

* A small but useful tool to save compiler optimization developers

ECE ILLINOIS

IirriNnoOTs

Motivation

e Statically determining the optimal code could be default or even
infeasible

* Sometimes it is input dependent

* Even a robust compiler or an expert could select suboptimal
sequence of optimization

» A catastrophic performance loss could happen

IirriNnoOTs

ECE ILLINOIS

Example: Intel OpenCL Vectorization for CPU

* Suboptimal heuristic for vectorization in sgemm and spmv-jds

"

B hewuristic lll scalar 22 A-way vector 5 8-way vector

:

"

speedup over heuristic
(higher is better)
:

g

=]
g

IirriNnoOTs

ECE ILLINOIS

Relax the Constraints

* Instead of asking a compiler for an optimized version which it thought
is the best

* Ask a compiler for multiple versions which are competitive
e A typical number is around 4-10
* Let the runtime to do the final selection

IirriNnoOTs

ECE ILLINOIS

Version Selection on Runtime

* We propose DySel for dynamic version selection on runtime

* Apply micro-profiling to sample the performance of each candidate

IirriNnoOls

ECE ILLINOIS

Micro-Profiling

* Profile a kernel with smaller workload
* A smaller number of work-group/thread block
* Avoid large impact of performance

* Multiple micro-profiling can be scheduled and even executed
concurrently

IicriNnoOIs

ECE ILLINOIS

Productive Profiling Mode

* Computation in profiling also contributes to the final output

Version A [

@profile@

compute \

Output

Version B

IirriNnoOTs

ECE ILLINOIS

Synchronous vs Asynchronous Scheduling

» Synchronous: Schedule the remaining workload after the best version is finalized

* Asynchronous: Schedule remaining workload eagerly in a batch using the current
best candidate

ile workload e workload workload
profile profile

profile .

> > >
M
blocking I
O e R0SNG, © | ° |
= | | | £ | | E
| I compute compute
compute
v v v
(a) Sync (b) Async (bad default) (c) Async (good default)
ECE ILLINOIS Titrinors

Sync vs Async Scheduling

* Sync

* Schedule the remaining workload after the best version is finalized

* Async

* Schedule remaining workload eagerly in a batch using the current best
candidate

IitriNnoOTs

ECE ILLINOIS

Sync vs Async Scheduling

Kernel Version

Kernel Version
Generator

Generator

y

A 4
(ko) ;
@ Suggest an initial @ @
(S ENC IR > O
A

Assign workgroups Assign WoLklg<roups
to each K; [j to each K;
, y
Update Kgesau: USiNg -
Productive, (2] the best profiled [< Micligc—)glrjg;ill\g% K
Micro- Profiling K; K;so far @ 9"
v 0 ‘
Schedule Kygtauit
Keleer = bESt K; for a batch of Profiling finished? Keeleet = beSt K;
work groups g i,

Apply I(select to
compute the
remaining workload

Apply Kselect to
compute the
remaining workload

(a) Sync

(b) Async

IitriNnoOIs

ECE ILLINOIS

Sync vs Async Scheduling

profile ; workload > profile ; workload > profile | workload 5
Il |
blocking I
D e 208N, © \ o |
£ | | l = | I =
| I compute compute
compute
v v v
(a) Sync (b) Async (bad default) (c) Async (good default)

ECE ILLINOIS

IirriNnoOTs

Things | skipped

* The two extra profiling modes

* Applicability and resource requirement of each mode

* What kind of compiler analyses needed for different modes
* Where compilers add profiling code in both CPU and GPU

* More details about DySel runtime using TBB and CUDA

ECE ILLINOIS IirriNnoTs

DySel Intertace

IDySelAddKernel (&
FREstringkflkernel sig, REREREREREREREER/ /Bkernelkinamell
IEREfunc_ptriRimplementation, RERERERER/ /Bkernelklimplementationh
IEREIdim3kBwa_factor, FHRERERERERERERERER/ /BworkkBlassignmentlifactorieE
IERIElvector<int>Esandbox index=RI[JEREER//Elargumentlloffsetskforke
IEIRIRIRIRIRIRIRI R R RRI R R R RRIRRIRIRIRIRIRIRIRIRIRIRIRIRIEIRIRIR / /Blsandboxes /privatelRloutputskE
121) ; B

(a) Kernel Implementation Registration API

EIDySelLaunchKernel (2

FRIERIstringklkernel sig,FRERER/ /Bkernelkinamel
FRIEIEIboolElprofiling=true,ERER/ /Eprofilingklactivationlkflaghk
FRIRIRlenumEimode=fully asyncRERl//Eprofilingkimodel

EE) ;B

(b) Kernel Launch API

TirriNnors

ECE ILLINOIS

Case Study: Locality-centric Scheduling for
CPU OpenCL

* |terate in-kernel loops first or work-item loops for OpenCL on CPU
(CGO’15) using MxPA

* Through analyzing access patterns

* [t is open-source, and robust
e “3.32x over AMD, 1.71x over Intel OpenCL stacks”

IirriNnoOTs

ECE ILLINOIS

Case Study: Locality-centric Scheduling for
CPU OpenCL

M Oracle & Sync Il Async(best initial selection) 7 Async(worst initial selection) = LC M \Worst
3.70 7.28 117.74 2.95 3.37 4.58
2.00
o 1.80
©
S 1.60
L __1.40
S s
e £ 1.20
B o
é E 1.00 7 : é':'
) - —
2 £ 0.80 ; - g-_-
@ 0 =
3 = 0.60 =
2 Z :12=
E 0.40 / = /—_—
€ o020 2 : Z:z:
7=
0.00 “
cutcp kmeans sgemm spmv-jds spmv-csr spmv-csr stencil GeoMean

(random) (diagonal)

TirriNnoTs

ECE ILLINOIS

Case Study: Data Placement for GPU

* Data placement optimizations are crucial for performance on GPUs (TPDS 2011 & MICRO 2014)
e Although they are not open-source, they did show the transformed results

* Suboptimal decisions due to inaccurate model or improper heuristic

Relative@xecutiondime®verdracle?
(lowersetter)a

2.500:

2.00R

[
U
o
[

.

[
o
o
[

. 7

0.500r 1

N

0.00E -

spmv-csrlzl

[
/2 e — —

M Oracle@

£ Syncl

Il Async(bestAnitialZelection)
#%. Async(worstinitial@election)
5= PORPLER

N Heuristic-based?

B \Worstk

Case Study: Experts” Mixed Optimizations

* Parboil provides multiple versions with different optimization strategies
* Optimized versions usually run better
* Some Optimizations are improper or redundant
e E.g.loop unrolling and prefetching in spmv-jds on Kepler

M Oraclel =|Syncl Il Async(best@nitialBelection)® % Async(worstlnitialBelection)? M WorstR M OraclelRE Synclllll Async(bestlnitialBelection)?% Async(worstAnitialB3election)z® WorstRl
7.743 .

= 2.00@ = 2.280E
= 1.80m -
8 e s
1.600@ =]
=t <
@ 3 1.400 =
£ g 1.208 2
S =
O &2 1.000R gz] 7
£ 9 7 5
3 2 o.son- - - u g -
: . m
& = 0.60m- %) || =
E 0.40 - - % -] - s

. ? === == > ==
é 0.203 - — - ;E % - aalels E - it

m | O =m | = _ s m |

cutcpl sgemmi spmv-jdsi stencil®@ GeoMeann cutcpl sgemmfi spmv-jdsi stencil® GeoMeanl
(a CPU (b) GPU

—

TirriNnoTs

ECE ILLINOIS

Relative@xecution®imeBver®racled

(lowerdstbetter)

Case Study: Input-dependent Optimizations

* Best optimizations could be input-dependent

8.63 60%.63

3008 § M Oraclel®
\ = Synchk
2.50@ \
\ Il Async(best@nitialz
§ selection)®
2008 \ 7 Async(worstAnitial®
\\ selection)@
\ = ?]
1.50E \ = scalar,@DFOR
W scalar,BFOR
10087 iz vector,@ADFOR
0.503 = vector,@BFORI

0.000E-

W \WorstR

randomBEnatrix diagonal@natrix

(a) CPU

ECE ILLINOIS

RelativeBxecution®ime@ver®racle?

(lowerfstbetter)a

4.7303 22.73(2122.732

M Oraclel®

& Syncl

il Async(best@nitial®
selection)

% Async(worselnitialz

selection)

 Scalar

N Vector

W \WorstR

o

%ﬁim

random@@atrix

)

)
09
[¢)
3
3
=g

(b) GPU

TiLriNnoTs

Conclusion

* DySel can deliver high accuracy and low overhead for dynamic version
selection in data-parallel programing model

e |ncur less than 8% of overhead in the worst observed case

* Using DySel is like buying an insurance...

IirriNnoOTs

ECE ILLINOIS

MxPA Backup

ECE ILLINOIS IirriNnots

Contributions

* Exploiting data locality in scheduling work-items for performance

* Real system and measurement demonstrates speedups of 3.32x and
1.71x over AMD and Intel OpenCL implementations

* 18 benchmarks from Parboil and Rodinia

* Nominated for best paper award at CGO’15
* AE certified

ECE ILLINOIS IirriNnoTs

OpenCL Programming Model

Kernel

Work Group Work Group

b

Global Memory

ECE ILLINOIS Dirrinors

void kernel(..) {
ig;
i,

ia-l;
barrier();
i;

1a+1;
lp_1s

kernel code

wi = work-item
wg = work-group
LS = local size

GS = global size

ECE ILLINOIS

OpenCL Execution Model

W8, WEg,

| —1 | |
Wiisq

Wis Wigyy Wiyisq

bbb bdd

—> immediate dependency
i, (O Instruction or instruction block
@ barrier for work-items in a work-group

WEGs/Ls-1
| |

Wigs.1

% % region,

region,

e o

How to schedule this execution
graph on a multicore CPU?

IirriNnoOTs

Work-group Scheduling

* Assign work-groups in whole to different cores
* Considerations: Locality, Load balance

PRI 9YTPPYTIRYYTY A A PYYPYTY

=t e i e e S b S S S
=t e i s G S

bd. bbb bbb b b bbb .dEs..& k. bdd..& k. bdd..&

CPU Core CPU Core CPU Core

ECE ILLINOIS [ILLINOTIS

CPU Core

Region Scheduling

* Serialize barrier-separated regions

TYYYTTYY TYYTTTY
QO QQOO O -G ééééééé...
TITTYTYTY ???????”
olofelefoloReliNe ééééééé...
???????

wz A — b bdddd. 5_

Work-item Scheduling

* How to schedule work-items within a region?
 Different approaches by different compilers

L ddbddd

ECE ILLINOIS ILLINOTIS

Existing Approaches

 AMD (Twin Peaks)

* SnuCL

S

> ¢
D
D C

¢

> ¢
7
/¢

> ¢
D C
D C

D C

L
o o [o af o o o
| | | | »
]
L] L]
L]
L
L]
r L]
L]
Ld
) @ ° ° ° s
Ld
L)
L]
L
L
g
g
Ld
g
° o "o
0
L
0
J
N Ld
- g
L] ..
- g
- 0
)' ©oas © (-]
nj ¥
d L
u g
n ¥
L] L]
0 g
L] LA
L] \ L
) U
[] < &
» g
n Ld

®
-
®
Y
L]
v,

Y

- 2 2 2

-
LN

NN

D

' }
OHDOOOOOO---O

Depth First Order (DFO) Scheduling

IirriNnoOTs

ECE ILLINOIS

Existing Approaches

* Intel OO0 0O O
o000 o

o000 o

* Karrenberg & Hack ‘ ‘ ‘ ‘
.o =

- 666e.

DFO Scheduling with Vectorization

ECE ILLINOIS IirriNnots

Memory Access Patterns

e.g. bfs
(each thread traverses a list of
neighbors)

e.g. sgemm
(threads computing adjecent
outputs access adjacent inputs)

e.g. kmeans
(all threads loop over the same
mean values)

IirriNnoOTs

DFO and Locality

=)

/

v,
Tea, ° ° °
...
....
° o ., ° °
...
...
4
/‘\ m /"\u,.
pa 7 7 7

ECE ILLINOIS IirriNnots

DFO and Locality

=)

/

v,
e, ° ° °
Y
Y
Y
*a
° o "va, °
Y
Yo
e
&
®
«
m /-\ /J\ ..
pa 7 7 7

ECE ILLINOIS IirriNnots

DFO and Locality

=)

/

v,
Tea, ° ° °
L2
...
...
° o "%, ° °
...
...
4
/‘\ m /"\u,.
pa 7 7 7

IirriNnoOTs

ECE ILLINOIS

Alternative Schedule: BFO

T

N N S S S

Breadth First Order (BFO) Scheduling

S
'
L
Z
—
—
=

ECE ILLINOIS

Alternative Schedule: BFO

sssis s

&&&é&&& &

BFO with Vectorization

(time progresses as color gets darker)

IirriNnoOTs

ECE ILLINOIS

DFO’s vs. BFO’s Impact on Locality

E DFO @BFO

0.8 -

0.6 -

0.4 -

10k

. NN o
d pf

sgm ctcp mrig tpcf sc hw kmns hst mrig nw spmv lkct lu
|

L1 data cache misses
(normalized to worst)

sad pbfs rbfs Imd geo

BFO has better locality DFO has better locality

BFO has better locality for 13 benchmarks, DFO has better locality for 5 benchmarks. No schedule is always the
ECE ILLINOIS

IirriNnoOTs

Locality Centric (LC) Scheduling

Wig Wi Wig 4

kernel region 'before

contains No R
loop? i 'N-1
YeS iafter
classify memory accesses
in loop
No
prefers BFO? —>

Yes

ECE ILLINOIS IirriNnots

Locality Centric (LC) Scheduling

Work-item Stride

0 1 Other
o 0 - DFO DFO
A
c
O
= 1 BFO - DFO
|3
o
(@)
= | Other BFO BFO

Classify memory accesses per loop body and tally which
schedule has greater popularity

IirriNnoOTs

ECE ILLINOIS

LC’s Impact on Locality

EDFO @BFO BELC

0.8 -

0.6 -

110 IH
LLLD III-
0

sgm ctcp mrig tpcf sc hw kmns hst mrig nw spmv lkct lud pf sad pbfs rbfs Imd
| |

L1 data cache misses
(normalized to worst)

BFO has better locality DFO has better locality

LC captures the best of both schedules

ECE ILLINOIS IirriNnots

Locality Results

BAMD MEIntel BLC

1*

i

23 08

g 3 I

(TS

- _

8 |

e 1 .
O%

sgm ctcp tpcf mrig lkct sc Imd kmns hw hst pf lud mrig nw spmv sad pbfs rbfs geo

LC has best locality for most benchmarks

ECE ILLINOIS IirriNnots

Performance Results

EAMD MEIntel BLC(novec.) BLC

1
%
% 0.8 -
+ 1 I
5 O
S= 06 i
i III I i il .
TR 1] 11
@)
IIII'IT[I[I 'Ilrlll-
04

ctcp hst hw kmns lkct Imd lud mrig mrig nw pbfs pf rbfs sad sc sgm spmv tpcf

LC (with vec.) outperforms AMD (without vec.) and Intel (with vec.) by 3.32x and 1.71x

LC (without vec.) is faster than Intel (with vec.) by 1.04x

ECE ILLINOIS IirriNnots

Summary

* Proposed an alternative scheduling approach to the state-of-the-art

 Demonstrated that no schedule is always best and proposed a static
schedule selection

e Qutperformed industry implementations in memory system efficiency
and performance

IirriNnoOTs

ECE ILLINOIS

Heterogeneous Computing in Blue Waters
C =R Ay

THE SUPERCOMPUTER COMPAMY

" Dual-socket Node
* One AMD Interlagos chip

* 8 core modules, 32 threads

e 156.5 GFs peak performance

e Consumes 2,504 GB of data per
second

* 32 GBs memory
51 GB/s bandwidth

* One NVIDIA Kepler chip

e 1.3 TFs peak performance
e Consumes 20,800 GB of data per

second
* 6 GBs GDDR5 memory Blue Waters contains 4,224 Cray XK7
e 250 GB/sec bandwidth compute nodes.

IirriNnoOTs

ECE ILLINOIS

