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Agenda

* Revolutionary paradigm shift in applications

* Post-Dennard technology pivot - heterogeneity

* An example of positive application-technology spiral

* Engineering high-efficiency software for heterogeneous computing
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A major paradigm shift

" |n the 20th Century, we were able to understand, design, and
manufacture what we can measure
e Physical instruments and computing systems allowed us to see farther, capture

more, communicate better, understand natural processes, control artificial
processes...
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A major paradigm shift

" |nthe 21st Century, we are able to understand, design, and create what
we can compute

* Computational models are allowing us to see even farther, going back and
forth in time, learn better, test hypothesis that cannot be verified any other
way, create safe artificial processes...
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Examples of Paradigm Shift
20t Century 215t Century

= Small mask patterns = Optical proximity correction

= Electronic microscope and Crystallography ® Computational microscope with initial

with computational image processing conditions from Crystallography

= Anatomic imaging with computational " Metabolic imaging sees disease before
image processing visible anatomic change

= Teleconference = Tele-emersion

= GPS = Self-driving cars
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Diving deeper into computational microscope

* Large clusters (scale out) allow simulation of biological systems of
realistic space dimensions
e 0.5A (0.05 nm) lattice spacing needed for accuracy
* Interesting biological systems have dimensions of mm or larger
* Thousands of nodes are required to hold and update all the grid points.

* Fast nodes (scale up) allow simulation at realistic time scales
* Simulation time steps at femtosecond (101> second) level needed for accuracy
* Biological processes take miliseconds or longer

e Current molecular dynamics simulations progress at about one day for each
10-100 microseconds of the simulated process.
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Blue Waters Science Breakthrough Example

= Determination of the structure of the HIV
capsid at atomic-level

= Collaborative effort of experimental groups at
the U. of Pittsburgh and Vanderbilt U., and the
Schulten’s computational team at the U. of
lllinois.

= 64-million-atom HIV capsid simulation of the
process through which the capsid
disassembles, releasing its genetic material

= 3 critical step in understanding HIV infection
and finding a target for antiviral drugs.
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Post-Dennard technology pivot -
heterogeneity
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Dennard Scaling of MOS Devices

5 GATE VOLTAGE [v] a3 GATE WOLTASE [v]
T 20 —— ' 3
E. E 1} -e008
- ___ 1ox = 1000A o
8 T 15 L =W=Su 5 o2 2 L' =WE
z | £ | - Vaip =~ IV
= | Vgul® =TV = sub
Z os- b Wy =085y = alf 2 v, 0TIV
o i e —————— = =
= | =
5 — 1
Q= T E— i 1 - 1 i i [}
o 5 0 15 20 o - 1 = 3 E
DRAIN vOLTAGE [v] DRAIN VOLTAGE [V]

JSSC Oct 1974, page 256
In this ideal scaling, as L — o*L Pas

* Vop — 00*Vpp, C— o*C, i — or*i

* Delay = CV,,/l scalesby a,sof — 1/«

 Power for each transistor is CV2*f and scales by o?
 keeping total power constant for same chip area
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Frequency Scaled Too Fast 1993-2003

Clock Frequency (MHz)
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Total Processor Power Increased

(super-scaling of frequency and chip size)
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Post-Dennard Pivoting

* Multiple cores with more moderate clock frequencies

" Heavy use of vector execution

" Employ both latency-oriented and throughput-oriented cores
= 3D packaging for more memory bandwidth

IirriNnoOTs

ECE ILLINOIS




Blue Waters Computing System
Operational at lllinois since 3/2013 49,504 CPUs -- 4,224 GPUs
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CPUs: Latency Oriented Design

= High clock frequency

" |Large caches

e Convert long latency memory accesses ALU ALU
Control
to short latency cache accesses

ALU ALU

C Dl |

= Sophisticated control

* Branch prediction for reduced branch
latency

gy MATRONIEAIEG G e
latency

= Powerful ALU

e Reduced operation latency
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GPUs: Throughput Oriented Design

" Moderate clock frequency

= Small caches
e To boost memory throughput

= Simple control
* No branch prediction
* No data forwarding

" Energy efficient ALUs
* Many, long latency but heavily pipelined
for high throughput

= Require massive number of threads
to tolerate latencies
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Applications Benefit from Both CPU and GPU

"= CPUs for sequential parts where = GPUs for parallel parts where

latency matters throughput wins
* CPUs can be 10+X faster than GPUs  GPUs can be 10+X faster than CPUs
for sequential code for parallel code

IirriNnoOTs
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Initial Production Use Results

Application Description Application Speedup
100 million atom benchmark with Langevin dynamics and
NAMD PME once every 4 steps, from launch to finish, all I/O 1.8
included
Lattice QCD parameters: grid size of 483 x 512 running at the
Chroma QCbp ) 5 & 2.4
physical values of the quark masses
Full run Graphite 4x4x1 (256 electrons), QMC followed b
QMCPACK P ( ) Q Y 2.7
VMC
Collisionless N-body stellar dynamics with multipole
ChaNGa -y Y : P 2.1
expansion and hydrodynamics
Anelastic wave propagation with staggered-grid finite-
AWP propag g8 g 1.2

difference and realistic plastic yielding
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An example of positive
application-technology spiral
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DEEP LEARNING IN COMPUTER VISION

ImageNet
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Traditional Computer Vision Deep Learning Object Detection Deep Learning Achieves
Experts + Time DNN + Data + HPC “Superhuman” Results

Slide courtesy of Steve Oberlin, NVIDIA



DIFFERENT MODALITIES OF REAL-WORLD DATA

Images/video
Image Detection
. -
i 3
z = R
pudic ol L
o B Y gl
Audio Audio features Speaker ID
N
A= PP Text classification, machine
Text = m—) N m=== translation, information
oo it retrieval, ....
Text Text features

Slide courtesy of Andrew Ng, Stanford University 20



A long way to go towards cognitive computing

¥ Social Sciences
Use the cartoon to answer the next TWO guestions.

: Taken from
C Unemployment http://www.ode. state.

chlearn/testing/samp
ocsci_sampletest en

Without his raise, which woall typify Phil's bebavios in the marketplice?
A, He will increase his interest for hagher priced ibems.
B, He will increase his demand for higher priced items.
C He will decrease his demand for lower peiced substitutes.

D, He will increase his demand for lower priced substitutes.
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More Heterogeneity Is Coming

" Beyond traditional CPUs and GPUs
* FPGAs (e.g., Microsoft FPGA cloud)
* ASICs (e.g., Google’s TPU)

" Beyond traditional DRAM
» Stacked DRAM for more memory bandwidth
* Non-volatile RAM for memory capacity
* Near/in memory computing for reduced power used in data movement
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Some Lessons Learned

* Throughput computing using GPUs can result in 2-3X end-to-end
application-level performance improvement

* GPUs, big data and deep learning have formed a positive spiral for the
industry

* GPU computing has so far had narrow but deep impact in the
application space
* Data movement overhead and small GPU memory
e Unified memory, HBM, NVLink, and HSA-style systems will help
* Low-level programming interfaces with poor performance portability
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Performance-Portability: One Source for All

Challenges

Solutions
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Coarsening Scheduling Alternatives

O
Depth First Order o 0 Breadth First
(DFO) Scheduling A <‘> Order (BFO)
] Scheduling

O
DFO Scheduling BFO with
with Vectorization Vectorization
(time progresses as color (time progresses as color
gets darker) gets darker)

bobbb66. 6
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Performance Results
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Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations
Kim et al., CGO’15
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Performance-Portability: One Source for All

Challenges

Solutions
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Hierarchical Compute Organization of Devices

CPU GPU
1. Process 1. Grid
2. Thread (vector-capable) 2. Block
3. Vector Lane 3. Warp
4. Instruction-level Parallelism 4. Thread
5. Instruction-level Parallelism

ECE ILLINOIS IirriNnots



Hierarchical Compute Organization of Devices

CPU nt = omp_get num_threads();
tile = (len + nt - 1)/nt;
#pragma omp parallel
1. Process ;
j = t thread 5
2. Thread (vector-capable) ) amp-getthread_nun()

4. |nstruction-level Parallelism

partial[j] = accum;

}

sum = 0;

for(int j = 0; j < nt; ++j) {
sum += partial[j];

}

return sum;
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Hierarchical Compute Organization of Devices

GPU

tile = (len + gridDim.x - 1)/gridDim.x;
sub_tile = (tile + blockDim.x - 1)/blockDim.Xx;

accum = O .
1. Grid
2. Block
3. Warp
tmp[threadIdx.x] = accum;
__syncthreads(); 4. Thread
for(unsigned s=1; s<blockDim.x; s *= 2) {
if(id >= s) 5. Instruction-level Parallelism

tmp[threadIdx.x] +=
tmp[threadIdx.x - s];
__syncthreads();
}
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial
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Tangram: Codelet-based Programming Model

__codelet
int sum(const Array<l,int> in) {
unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {
accum += in[i];

}

return accum;
} (a) Atomic autonomous codelet

__codelet _ coop _ tag(kog)

int sum(const Array<l,int> in) {
__shared int tmp[coopDim()];
unsigned len = in.size();
unsigned id = coopIdx();

tmp[id] = (id < len)? in[id] : e;
for(unsigned s=1; s<coopDim(); s *= 2) {
if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

(b) Atomic cooperative codelet

ECE ILLINOIS

__codelet _ tag(asso_tiled)
int sum(const Array<l,int> in) {
__tunable unsigned p; 19 ,
unsigned len = in.size(); Riniaiivivieiuiaieie
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in,
p,sequence(0,tile,len),sequence(l),sequence(tile,tile,len+l))));

(c) Compound codelet using adjacent tiling

__codelet _ tag(stride_tiled)
int sum(const Array<l,int> in) {
__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in,
p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,1len+l))));

(d) Compound codelet using strided tiling
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Tangram: Composition Example
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Tangram Results
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Need for Run-time Selection

e Statically determining best algorithm could be difficult or infeasible
* Sometimes it is input dependent

* Even a robust compiler or an expert could select suboptimal
sequence of optimization

» A catastrophic performance loss could happen
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DySel Runtime Selects the Best Version

* Application or compiler provides multiple versions
* Typically 4-10

DySel

* Runtime performs the final selection
* Apply micro-profiling to sample the performance of each candidate

* Use a small subset of the actual workload per candidate
e Contributes to final result

* Profile candidates concurrently
* Reduces profiling overhead

e Incurs less than 8% of overhead in the worst observed case

TirriNnots
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Productive Profiling Mode

* Computation in profiling also contributes to the final output

& Probational Period = & Tenured Period -
Version A | [ t ) \
rofil compute -
U S - {0, -
Output (
Version B \/) \/)

Workload Space -
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Relative@xecution®imeBver®racle?

(lowerfstbetter)

Case Study: Input-dependent Optimizations

* Best optimizations could be input-dependent

8'63%.“605'635
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Conclusion and Outlook

* Applications have very large appetite for more computing power
* Both larger scale clusters and faster devices

* Heterogeneity has become the norm for all hardware systems
« HPC community are currently seeing about 2-3x application speedup
* Recent positive spiral between deep learning and GPU computing
* More positive spirals are yet to come

* Performance portability is critical for broad software adoption

* There is critical need for programming systems with strong support for
portability

* Performance portability involves several dimensions of technical challenges

* Unfortunately, vendors have not been interested in solving this problem.
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Thank you!
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Backup Slides
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Performance-Portability: One Source for All
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Coarse-grain CPU threads Fine-grain GPU threads
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Coarsening Scheduling Alternatives

O
Depth First Order o 0 Breadth First
(DFO) Scheduling A <‘> Order (BFO)
] Scheduling

O
DFO Scheduling BFO with
with Vectorization Vectorization
(time progresses as color (time progresses as color
gets darker) gets darker)
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OpenCL/CUDA to CPU Compilers

Basic Coarsening Locality-aware Scheduling

Vectorization

(DFO) (DFO vs. BFO)

AMD

MCUDA

SnuCL

Karrenberg
& Hack

pocl
Intel

MxPA
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Performance Results
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Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations
Kim et al., CGO’15

geo
?.t‘-ﬁaﬂ-l' .

u Iz
b5 1 Tl

ECE ILLINOIS IirriNnots




Performance-Portability: One Source for All

Challenges

Solutions

ECE ILLINOIS

-

Granularity
of Parallelism

\_

~N

J

-

\_

Levels of
Hierarchy

~N

J

-

Coarsening

\_

~

J

-

\_

Codelet
Composition

~

J

Memory
Characteristics

Automatic Data
Placement

-

Resource
Sizes

~N

-

\_

Micro-
architecture

~N

J

-

\_

Autotuning

~

J

-

\_

Algorithmic
Choice

~

J

.I_Il.[.IN{:}]S



Data Placement Options

CPU GPU
= Global memory = Global memory
= Caches (data tiling) » Caches (data tiling)
= Registers = Registers
+

= Scratchpad memory
= Constant memory

= Jexture memory

IirriNnoOTs
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Rule-based vs. Model-based

* Rule-based (e.g., Jang et al.)
* Heuristics on the memory access pattern

* Model-based (e.g., PORPLE)

* Create a model the memory subsystem
* Slower but more accurate

IirriNnoOTs
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Tangram’s Rule-based Data Placement
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GPU Tuning: Scan Case Study

100%
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Performance
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Tuned for Fermi Tuned for Fermi Tuned for Kepler  Re-optimized for Kepler

Run on Fermi Run on Kepler
> > >

Retune Re-optimize

Architecture
Upgrade
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Scratchpad atomics performance (stream compaction)
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Motivation Backup
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X PAC ., THE CENTER FOR EXASCALE SIMULATION
. OF PLASMA-COUPLED COMBUSTION

* Codesign among diverse areas will be required to reach exascale
* Every level of the computational stack is a potential bottleneck.

e XPACC COde WI” need to run 99°999 99979 99 999 9999 999999 99999 ¢

- Exd XKxk RE R
efficiently and portably on next- %‘5%%@ %%% %ﬁ% %%
generation heterogeneous REIR TR IR PRI T 3 O 7. 00 S T FE B 585888
platforms (CPUs, GPUs, Xeon-

Phis)
Blue Waters: &
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Initial Production Use Results

* NAMD

* 100 million atom benchmark with Langevin dynamics and PME once every 4 steps,
from launch to finish, all I/O included

* 768 nodes, Kepler+interlagos is 3.9X faster over Interlagos-only
e 768 nodes, XK7 is 1.8X XE6

e Chroma

 Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the
quark masses

* 768 nodes, Kepler+interlagos is 4.9X faster over Interlagos-only
e 768 nodes, XK7 is 2.4X XE6

* QMCPACK
* Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
e 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
e 700 nodes, XK7 is 2.7X XE6

TirriNnors
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Blue Waters Science Production Applications

* Work with science teams to effectively use GPUs in their production code.

* ChaNGa — cosmological simulation, University of Washington
 AWP — earthquake simulation, Southern California Earthquake Center

e Significant speedup by tuning kernels to specific GPU characteristics
* Real-world opportunities for performance portability

GPU Kernel Optimizations

__m
Baseline 1.35
Optimized 1.16
“ Baseline 61.6 1.33
Optimized 43.3
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Levels of GPU Programming Interfaces

Par4all, Tangram...

Implementation manages GPU threading and synchronization
invisibly to user

Same GPU execution model (but less boilerplate)

‘
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Portability- CPU vs. GPU Code Versions

" Maintaining multiple code versions is extremely expensive
= Most CUDA/OpenCL developers maintain original CPU version

" Many developers report that when they back ported the
CUDA/OpenCL algorithms to CPU, they got better performing code

* Locality, SIMD, multicore

" MxPA is designed to automate this process (John Stratton, Hee-Seok Kim,
|zzat El Hajj)

IirriNnoOTs
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Performance Library

" A major qualifying factor for new computing platforms
 MKL, BLAS, CUSPARSE, Trust, FFT, OpenCV, CUDNN, etc.
e Currently redeveloped and hand-tuned for each HW type/generation

" Exa-scale HW expected to have increasing levels of heterogeneity,
parallelism, and hierarchy
* Increasing levels of memory heterogeneity and hierarchy
* Increase SIMD width and types/number of cores

" Performance library development process must keep up with the HW
evolution and diversification

e Performance portability

ECE ILLINGIS TirriNnors
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SoC (2 cores)
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Portability Backup
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Granularity Tuning (OpenCL)

Results of thread coarsening for Parboil benchmarks(written for NVIDIA SIMT GPUs)

on AMD Radeon HD6990 (VLIW-5)

Kernel execution time speedup over baseline
AZF W
A e
S
&
2Lk
.00 ] ]
=m all large defaulk large =rm all large =mall medium =m all medium
cutcp cutcp histo™ histo™ m ri-q ¥ m ri-g ¥ SoEmMmm |(sgemm™ F | sgemm ™ =

* Not a single kernel
** Results from more than one dimension coarsening

Results compiled using MulticoreWare’s SlotMaximizer
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* Reduction — CPU vs. GPU (Part 1)

GPUs favor inter-thread locality

CPUs favor intra-thread locality (within Work Groups)

__—
O
A
]

=
w Tree-shape
parallel reduction
4
[

IirriNnoOTs

ECE ILLINOIS



e Reduction — CPU vs. GPU (Part 2)

CPU 2-level hierarchy GPU 4-level hierarchy
| [ [ [ N v s o s S s A S 5 S D s S AN o s s OO v S s i BN S B 5 s |
B R R PEEOEDDODLD - OOOER
N X X = . Y gy
— - - -
D - - JJa I
1 SN G G
- 3 3 3 +  Collect from Work
- - - -
- Group partial
w results
3
-
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* CPU Parameter Tuning

Mandelbrot performance with vector width

M Scalar mSSE m AVX

Speedup
O B N W & U1 O N

128 256 512 1024 2048 4096
Image Size

Results courtesy of intel.com
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GPU Parameter Tuning

Non-portable tile sizes

100%
90%
80%
70%
60%
50% -
40% -
30% -
20% -
10% -

0% -

68%

58%

Relative Performance

[ [
Original version tuned for Tesla  Tiling parameters retuned for

Fermi
(all running on Fermi GPU)
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GPU Parameter Tuning

Non-portable tile sizes

100%
90%
80%
70%
60%
50% -
40% -
30% -
20% -
10% -

0% -

68%

58%

Relative Performance

Original version tuned for Tesla  Tiling parameters retuned for Tiling restructured

Fermi
(all running on Fermi GPU)
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Execution Time int32 (ms)

Bitonic Sort 35

30
i ) . i _ 25 -
int swap(int x, int mask, int dir)
{ 20 -
int v = ___shfl_xor(x, mask); 15 -
N return x < y == dir ? yv : Xx; 10 _
5 |
X = swap(x, O0x01, bfe(laneid, 1) A bfe(laneid, 0)); // 2 0 -
x = swap(x, 0x02, bfe(laneid, 2) A bfe(laneid, 1)); // 4 SMEM SHFL
x = swap(x, O0x01, bfe(laneid, 2) A bfe(laneid, 0)); (unsafe)
x = swap(x, 0x04, bfe(laneid, 3) A bfe(laneid, 2)); // 8
x = swap(x, 0x02, bfe(laneid, 3) A bfe(laneid, 1)); SMEM per Block (KB)
X = swap(x, Ox01, bfe(laneid, 3) A bfe(laneid, 0)); a5
x = swap(x, 0x08, bfe(laneid, 4) A bfe(laneid, 3)); // 16 -
x = swap(x, 0x04, bfe(laneid, 4) A bfe(laneid, 2)); 4 -
x = swap(x, 0x02, bfe(laneid, 4) A bfe(laneid, 1)); 3.5 -
x = swap(x, O0x01, bfe(laneid, 4) A bfe(laneid, 0)); 3
x = swap(x, 0x10, bfe(laneid, 4)); // 32 2 5 -
x = swap(x, O0x08, bfe(laneid, 3)); o
x = swap(x, O0x04, bfe(laneid, 2)):; _——
x = swap(x, O0x02, bfe(laneid, 1)):; )
X = swap(x, Ox01, bfe(laneid, 0)):; Ll
0.5 -
J/ int bfe(int i, int k): Extract k-th bit from i 0 - . ]
SMEM SHFL
S/ PTX: bfe dst, src, start, len (see p.8l, ptx_isa_3.1) (unsafe)

Slide courtesy of nvidia.com
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C/FORTRAN CUDA, OpenCL

OpenMP, TBB,
+ SIMD Verilog, VHDL

Pthreads, Cilk... ’
Intrinsics

cpu L Muicors G &
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7

[ C/FORTRAN

OpenMP TBB
Pthreads, Cilk...

+ SIMD
Intrinsics

7

[ Verilog, VHDL

~

cpu L Muicors G
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* Locality-centric work-item scheduling

e Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

+SIMD } [ Verilog, VHDL

OpenMP TBB
Pthreads, Cilk...
[ Intrinsics

CUDA, OpenCL

7
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Tangram

[ C/FORTRAN } [ CUDA, OpenCL }

OpenMP, TBB,
Pthreads, Cilk...
Intrinsics

|

+ SIMD } Verilog, VHDL
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Tangram Backup
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Devices have different
architectural hierarchies
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Computation Codelets

Decomposition Codelets

/AV

Programmer writes
architecture-neurtral
computations and
decomposition rules
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Computation Codelets

Decomposition Codelets

AV

Compiler maps o0 00 00 00
o0 00 00 00

computations

to each level of
the hierarchy...
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Computation Codelets

Decomposition Codelets

AV

...and
decomposition
rules between

each level
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DySel Backup
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DySel

* Pronounced as diesel/'di:zal/

* Imply low-cost and high-efficiency
* Diesel was cheaper than regular gas, when we submitted the paper... :v

* A small but useful tool to save compiler optimization developers

ECE ILLINOIS
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Motivation

e Statically determining the optimal code could be default or even
infeasible

* Sometimes it is input dependent

* Even a robust compiler or an expert could select suboptimal
sequence of optimization

» A catastrophic performance loss could happen

IirriNnoOTs
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Example: Intel OpenCL Vectorization for CPU

* Suboptimal heuristic for vectorization in sgemm and spmv-jds

"

B hewuristic lll scalar 22 A-way vector 5 8-way vector

:

"

speedup over heuristic
(higher is better)
:

g

=]
g

IirriNnoOTs
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Relax the Constraints

* Instead of asking a compiler for an optimized version which it thought
is the best

* Ask a compiler for multiple versions which are competitive
e A typical number is around 4-10
* Let the runtime to do the final selection

IirriNnoOTs
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Version Selection on Runtime

* We propose DySel for dynamic version selection on runtime

* Apply micro-profiling to sample the performance of each candidate

IirriNnoOls
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Micro-Profiling

* Profile a kernel with smaller workload
* A smaller number of work-group/thread block
* Avoid large impact of performance

* Multiple micro-profiling can be scheduled and even executed
concurrently

IicriNnoOIs
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Productive Profiling Mode

* Computation in profiling also contributes to the final output

Version A [

@profile@

compute \

Output

Version B

IirriNnoOTs
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Synchronous vs Asynchronous Scheduling

» Synchronous: Schedule the remaining workload after the best version is finalized

* Asynchronous: Schedule remaining workload eagerly in a batch using the current
best candidate

ile workload e workload workload
profile profile

profile .

> > >
M
blocking I
O e R0SNG, © | ° |
= | | | £ | | E
| I compute compute
compute
v v v
(a) Sync (b) Async (bad default) (c) Async (good default)
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Sync vs Async Scheduling

* Sync

* Schedule the remaining workload after the best version is finalized

* Async

* Schedule remaining workload eagerly in a batch using the current best
candidate

IitriNnoOTs
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Sync vs Async Scheduling

Kernel Version

Kernel Version
Generator

Generator

y

A 4
(ko) ;
@ Suggest an initial @ @
(S ENC IR > O
A

Assign workgroups Assign WoLklg<roups
to each K; [j to each K;
, y
Update Kgesau: USiNg -
Productive, (2] the best profiled [< Micligc—)glrjg;ill\g% K
Micro- Profiling K; K;so far @ 9"
v 0 ‘
Schedule Kygtauit
Keleer = bESt K; for a batch of Profiling finished? Keeleet = beSt K;
work groups g i,

Apply I(select to
compute the
remaining workload

Apply Kselect to
compute the
remaining workload

(a) Sync

(b) Async

IitriNnoOIs
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Sync vs Async Scheduling

profile ; workload > profile ; workload > profile | workload 5
Il |
blocking I
D e 208N, © \ o |
£ | | l = | I =
| I compute compute
compute
v v v
(a) Sync (b) Async (bad default) (c) Async (good default)

ECE ILLINOIS
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Things | skipped

* The two extra profiling modes

* Applicability and resource requirement of each mode

* What kind of compiler analyses needed for different modes
* Where compilers add profiling code in both CPU and GPU

* More details about DySel runtime using TBB and CUDA
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DySel Intertace

IDySelAddKernel (&
FREstringkflkernel sig, REREREREREREREER/ /Bkernelkinamell
IEREfunc_ptriRimplementation, RERERERER/ /Bkernelklimplementationh
IEREIdim3kBwa_factor, FHRERERERERERERERER/ /BworkkBlassignmentlifactorieE
IERIElvector<int>Esandbox index=RI[ JEREER//Elargumentlloffsetskforke
IEIRIRIRIRIRIRIRI R R RRI R R R RRIRRIRIRIRIRIRIRIRIRIRIRIRIRIEIRIRIR / /Blsandboxes /privatelRloutputskE
121) ; B

(a) Kernel Implementation Registration API

EIDySelLaunchKernel (2

FRIERIstringklkernel sig,FRERER/ /Bkernelkinamel
FRIEIEIboolElprofiling=true,ERER/ /Eprofilingklactivationlkflaghk
FRIRIRlenumEimode=fully asyncRERl//Eprofilingkimodel

EE) ;B

(b) Kernel Launch API

TirriNnors
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Case Study: Locality-centric Scheduling for
CPU OpenCL

* |terate in-kernel loops first or work-item loops for OpenCL on CPU
(CGO’15) using MxPA

* Through analyzing access patterns

* [t is open-source, and robust
e “3.32x over AMD, 1.71x over Intel OpenCL stacks”

IirriNnoOTs
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Case Study: Locality-centric Scheduling for
CPU OpenCL

M Oracle & Sync Il Async(best initial selection) 7 Async(worst initial selection) = LC M \Worst
3.70 7.28 117.74 2.95 3.37 4.58
2.00
o 1.80
©
S 1.60
L __1.40
S s
e £ 1.20
B o
é E 1.00 7 : é':'
) - —
2 £ 0.80 ; - g-_-
@ 0 =
3 = 0.60 =
2 Z :12=
E 0.40 / = /—_—
€ o020 2 : Z:z:
7=
0.00 “
cutcp kmeans sgemm spmv-jds spmv-csr spmv-csr stencil GeoMean

(random) (diagonal)

TirriNnoTs

ECE ILLINOIS




Case Study: Data Placement for GPU

* Data placement optimizations are crucial for performance on GPUs (TPDS 2011 & MICRO 2014)
e Although they are not open-source, they did show the transformed results

* Suboptimal decisions due to inaccurate model or improper heuristic

Relative@xecutiondime®verdracle?
(lowersetter)a

2.500:

2.00R

[
U
o
[

.

[
o
o
[

. 7

0.500r 1

N

0.00E -

spmv-csrlzl

[
/2 e — —

M Oracle@

£ Syncl

Il Async(bestAnitialZelection)
#%. Async(worstinitial@election)
5= PORPLER

N Heuristic-based?

B \Worstk




Case Study: Experts” Mixed Optimizations

* Parboil provides multiple versions with different optimization strategies
* Optimized versions usually run better
* Some Optimizations are improper or redundant
e E.g.loop unrolling and prefetching in spmv-jds on Kepler

M Oraclel =|Syncl Il Async(best@nitialBelection)® % Async(worstlnitialBelection)? M WorstR M OraclelRE Synclllll Async(bestlnitialBelection)?% Async(worstAnitialB3election)z® WorstRl
7.743 .

= 2.00@ = 2.280E
= 1.80m -
8 e s
1.600@ =]
=t <
@ 3 1.400 =
£ g 1.208 2
S =
O &2 1.000R gz ] 7
£ 9 7 5
3 2 o.son- - - u g -
: . m
& = 0.60m- % ) || =
E 0.40 - - % - ] - s

. ? === == > ==
é 0.203 - — - ;E % - aalels E - it

m | O =m | = _ s m |

cutcpl sgemmi spmv-jdsi stencil®@ GeoMeann cutcpl sgemmfi spmv-jdsi stencil® GeoMeanl
(a CPU (b) GPU

—
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Relative@xecution®imeBver®racled

(lowerdstbetter)

Case Study: Input-dependent Optimizations

* Best optimizations could be input-dependent

8.63 60%.63

3008 § M Oraclel®
\ = Synchk
2.50@ \
\ Il Async(best@nitialz
§ selection)®
2008 \ 7 Async(worstAnitial®
\\ selection)@
\ = ?]
1.50E \ = scalar,@DFOR
W scalar,BFOR
10087 iz vector,@ADFOR
0.503 = vector,@BFORI

0.000E-

W \WorstR

randomBEnatrix diagonal@natrix

(a) CPU
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RelativeBxecution®ime@ver®racle?

(lowerfstbetter)a

4.7303 22.73(2122.732

M Oraclel®

& Syncl

il Async(best@nitial®
selection)

% Async(worselnitialz

selection)

 Scalar

N Vector

W \WorstR

o

%ﬁim

random@@atrix

)

)
09
[¢)
3
3
=g

(b) GPU
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Conclusion

* DySel can deliver high accuracy and low overhead for dynamic version
selection in data-parallel programing model

e |ncur less than 8% of overhead in the worst observed case

* Using DySel is like buying an insurance...
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MxPA Backup
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Contributions

* Exploiting data locality in scheduling work-items for performance

* Real system and measurement demonstrates speedups of 3.32x and
1.71x over AMD and Intel OpenCL implementations

* 18 benchmarks from Parboil and Rodinia

* Nominated for best paper award at CGO’15
* AE certified
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OpenCL Programming Model

Kernel

Work Group Work Group

b

Global Memory
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void kernel(..) {
ig;
i,

ia-l;
barrier();
i;

1a+1;
lp_1s

kernel code

wi = work-item
wg = work-group
LS = local size

GS = global size

ECE ILLINOIS

OpenCL Execution Model

W8, WEg,

| —1 | |
Wiisq

Wis  Wigyy Wiyisq

bbb bdd

—> immediate dependency
i, (O Instruction or instruction block
@ barrier for work-items in a work-group

WEGs/Ls-1
| |

Wigs.1

% % region,

region,

e o

How to schedule this execution
graph on a multicore CPU?
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Work-group Scheduling

* Assign work-groups in whole to different cores
* Considerations: Locality, Load balance

PRI 9YTPPYTIRYYTY A A PYYPYTY

=t e i e e S b S S S
=t e i s G S

bd. bbb bbb b b bbb .dEs..& k. bdd..& k. bdd..&

CPU Core CPU Core CPU Core
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Region Scheduling

* Serialize barrier-separated regions

TYYYTTYY TYYTTTY
QO QQOO O -G ééééééé...
TITTYTYTY ???????”
olofelefoloReliNe ééééééé...
???????

wz A — b bdddd. 5_




Work-item Scheduling

* How to schedule work-items within a region?
 Different approaches by different compilers

L ddbddd
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Existing Approaches

 AMD (Twin Peaks)

* SnuCL
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Depth First Order (DFO) Scheduling
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Existing Approaches

* Intel OO0 0O O
o000 o

o000 o

* Karrenberg & Hack ‘ ‘ ‘ ‘
.o =

- 666e.

DFO Scheduling with Vectorization
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Memory Access Patterns

e.g. bfs
(each thread traverses a list of
neighbors)

e.g. sgemm
(threads computing adjecent
outputs access adjacent inputs)

e.g. kmeans
(all threads loop over the same
mean values)
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DFO and Locality
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DFO and Locality
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DFO and Locality
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Alternative Schedule: BFO

T

N N S S S

Breadth First Order (BFO) Scheduling

S
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Alternative Schedule: BFO

sssis s

&&&é&&& &

BFO with Vectorization

(time progresses as color gets darker)
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DFO’s vs. BFO’s Impact on Locality

E DFO @BFO

0.8 -

0.6 -

0.4 -

10k

. NN o
d pf

sgm ctcp mrig tpcf sc hw kmns hst mrig nw spmv lkct lu
|

L1 data cache misses
(normalized to worst)

sad pbfs rbfs Imd geo

BFO has better locality DFO has better locality

BFO has better locality for 13 benchmarks, DFO has better locality for 5 benchmarks. No schedule is always the
ECE ILLINOIS
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Locality Centric (LC) Scheduling

Wig Wi Wig 4

kernel region 'before

contains No R
loop? i 'N-1
YeS iafter
classify memory accesses
in loop
No
prefers BFO? —>

Yes
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Locality Centric (LC) Scheduling

Work-item Stride

0 1 Other
o 0 - DFO DFO
A
c
O
= 1 BFO - DFO
|3
o
(@)
= | Other BFO BFO

Classify memory accesses per loop body and tally which
schedule has greater popularity
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LC’s Impact on Locality

EDFO @BFO BELC

0.8 -

0.6 -

110 IH
LLLD III-
0

sgm ctcp mrig tpcf sc hw kmns hst mrig nw spmv lkct lud pf sad pbfs rbfs Imd
| |

L1 data cache misses
(normalized to worst)

BFO has better locality DFO has better locality

LC captures the best of both schedules
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Locality Results

BAMD MEIntel BLC

1*

i

23 08

g 3 I

(TS

- _

8 |

e 1 .
O%

sgm ctcp tpcf mrig lkct sc  Imd kmns hw hst pf lud mrig nw spmv sad pbfs rbfs geo

LC has best locality for most benchmarks

ECE ILLINOIS IirriNnots



Performance Results

EAMD MEIntel BLC(novec.) BLC

1
%
% 0.8 -
+ 1 I
5 O
S= 06 i
i III I i il .
TR 1] 11
@)
IIII'IT[I[I 'Ilrlll-
04

ctcp hst hw kmns lkct Imd lud mrig mrig nw pbfs pf rbfs sad sc sgm spmv tpcf

LC (with vec.) outperforms AMD (without vec.) and Intel (with vec.) by 3.32x and 1.71x

LC (without vec.) is faster than Intel (with vec.) by 1.04x
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Summary

* Proposed an alternative scheduling approach to the state-of-the-art

 Demonstrated that no schedule is always best and proposed a static
schedule selection

e Qutperformed industry implementations in memory system efficiency
and performance
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Heterogeneous Computing in Blue Waters
C =R Ay

THE SUPERCOMPUTER COMPAMY

" Dual-socket Node
* One AMD Interlagos chip

* 8 core modules, 32 threads

e 156.5 GFs peak performance

e Consumes 2,504 GB of data per
second

* 32 GBs memory
51 GB/s bandwidth

* One NVIDIA Kepler chip

e 1.3 TFs peak performance
e Consumes 20,800 GB of data per

second
* 6 GBs GDDR5 memory Blue Waters contains 4,224 Cray XK7
e 250 GB/sec bandwidth compute nodes.
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