Innovative Applications and Technology Pivots – A Perfect Storm in Computing

Wen-mei Hwu

Professor and Sanders-AMD Chair, ECE, NCSA

University of Illinois at Urbana-Champaign

with

Izzat El Hajj, Liwen Chang, Simon Garcia, and Carl Pearson

ECE ILLINOIS

NOIS

Agenda

- Revolutionary paradigm shift in applications
- Post-Dennard technology pivot heterogeneity
- An example of positive application-technology spiral
- Engineering high-efficiency software for heterogeneous computing

A major paradigm shift

- In the 20th Century, we were able to understand, design, and manufacture what we can measure
 - Physical instruments and computing systems allowed us to see farther, capture more, communicate better, understand natural processes, control artificial processes...

A major paradigm shift

- In the 20th Century, we were able to understand, design, and manufacture what we can measure
 - Physical instruments and computing systems allowed us to see farther, capture more, communicate better, understand natural processes, control artificial processes...
- In the 21st Century, we are able to understand, design, and create what we can compute
 - Computational models are allowing us to see even farther, going back and forth in time, learn better, test hypothesis that cannot be verified any other way, create safe artificial processes...

Examples of Paradigm Shift

20th Century

- Small mask patterns
- Electronic microscope and Crystallography with computational image processing
- Anatomic imaging with computational image processing
- Teleconference

- 21st Century
- Optical proximity correction
- Computational microscope with initial conditions from Crystallography
- Metabolic imaging sees disease before visible anatomic change
- Tele-emersion
- Self-driving cars

GPS

Diving deeper into computational microscope

- Large clusters (scale out) allow simulation of biological systems of realistic space dimensions
 - 0.5Å (0.05 nm) lattice spacing needed for accuracy
 - Interesting biological systems have dimensions of mm or larger
 - Thousands of nodes are required to hold and update all the grid points.
- Fast nodes (scale up) allow simulation at realistic time scales
 - Simulation time steps at femtosecond (10⁻¹⁵ second) level needed for accuracy
 - Biological processes take miliseconds or longer
 - Current molecular dynamics simulations progress at about one day for each 10-100 microseconds of the simulated process.

Blue Waters Science Breakthrough Example

- Determination of the structure of the HIV capsid at atomic-level
- Collaborative effort of experimental groups at the U. of Pittsburgh and Vanderbilt U., and the Schulten's computational team at the U. of Illinois.
- 64-million-atom HIV capsid simulation of the process through which the capsid disassembles, releasing its genetic material
- a critical step in understanding HIV infection and finding a target for antiviral drugs.

Post-Dennard technology pivot - heterogeneity

Dennard Scaling of MOS Devices

• In this ideal scaling, as $L \rightarrow \alpha^* L$

- $V_{DD} \rightarrow \alpha^* V_{DD}$, $C \rightarrow \alpha^* C$, $i \rightarrow \alpha^* i$
- Delay = CV_{DD}/I scales by α , so f $\rightarrow 1/\alpha$
- Power for each transistor is $CV^{2*}f$ and scales by α^{2}
 - keeping total power constant for same chip area

Frequency Scaled Too Fast 1993-2003

ILLINOIS

Total Processor Power Increased

(super-scaling of frequency and chip size)

Post-Dennard Pivoting

- Multiple cores with more moderate clock frequencies
- Heavy use of vector execution
- Employ both latency-oriented and throughput-oriented cores
- 3D packaging for more memory bandwidth

Blue Waters Computing System

Operational at Illinois since 3/2013

ECE ILLINOIS

49,504 CPUs -- 4,224 GPUs

ILLINOIS

CPUs: Latency Oriented Design

- High clock frequency
- Large caches
 - Convert long latency memory accesses to short latency cache accesses
- Sophisticated control
 - Branch prediction for reduced branch latency
 - Data forwarding for reduced data latency
- Powerful ALU

ECE ILLINOIS

• Reduced operation latency

DRAM

ILLINOIS

GPUs: Throughput Oriented Design

- Moderate clock frequency
- Small caches
 - To boost memory throughput
- Simple control

ECE ILLINOIS

- No branch prediction
- No data forwarding
- Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies

DRAM

Applications Benefit from Both CPU and GPU

- CPUs for sequential parts where latency matters
 - CPUs can be 10+X faster than GPUs for sequential code
- GPUs for parallel parts where throughput wins
 - GPUs can be 10+X faster than CPUs for parallel code

Initial Production Use Results

Application Description		Application Speedup
NAMD	100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included	1.8
Chroma	Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the quark masses	2.4
QMCPACK	Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC	2.7
ChaNGa	Collisionless N-body stellar dynamics with multipole expansion and hydrodynamics	2.1
AWP	Anelastic wave propagation with staggered-grid finite- difference and realistic plastic yielding	1.2

An example of positive application-technology spiral

DEEP LEARNING IN COMPUTER VISION

Traditional Computer Vision Experts + Time Deep Learning Object Detection DNN + Data + HPC Deep Learning Achieves "Superhuman" Results

Slide courtesy of Steve Oberlin, NVIDIA

DIFFERENT MODALITIES OF REAL-WORLD DATA

Slide courtesy of Andrew Ng, Stanford University

A long way to go towards cognitive computing

▼ Social Sciences

Use the cartoon to answer the next TWO questions.

More Heterogeneity Is Coming

- Beyond traditional CPUs and GPUs
 - FPGAs (e.g., Microsoft FPGA cloud)
 - ASICs (e.g., Google's TPU)
- Beyond traditional DRAM
 - Stacked DRAM for more memory bandwidth
 - Non-volatile RAM for memory capacity
 - Near/in memory computing for reduced power used in data movement

Some Lessons Learned

- Throughput computing using GPUs can result in 2-3X end-to-end application-level performance improvement
- GPUs, big data and deep learning have formed a positive spiral for the industry
- GPU computing has so far had narrow but deep impact in the application space
 - Data movement overhead and small GPU memory
 - Unified memory, HBM, NVLink, and HSA-style systems will help
 - Low-level programming interfaces with poor performance portability

Engineering high-efficiency software for heterogeneous computing

Performance-Portability: One Source for All

Coarsening Scheduling Alternatives

Depth First Order (DFO) Scheduling

Breadth First Order (BFO) Scheduling

DFO Scheduling with Vectorization (time progresses as color gets darker)

ECE ILLINOIS

BFO with Vectorization (time progresses as color gets darker)

ILLINOIS

Performance Results

AMD Intel LC (no vec.) LC

ctcp hst hw kmns lkct Imd lud mrig mriq nw pbfs pf rbfs sad sc sgm spmv tpcf geo

Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations Kim et al., CGO'15

Performance-Portability: One Source for All

Hierarchical Compute Organization of Devices

1. Process

- 2. Thread (vector-capable)
- 3. Vector Lane
- 4. Instruction-level Parallelism

- 1. Grid
- 2. Block
- 3. Warp
- 4. Thread
- 5. Instruction-level Parallelism

Hierarchical Compute Organization of Devices

CPU

1. Process

- 2. Thread (vector-capable)
- 3. Vector Lane
- 4. Instruction-level Parallelism


```
nt = omp_get_num_threads();
tile = (len + nt - 1)/nt;
#pragma omp parallel
ł
    j = omp get thread num();
    accum = 0;
    #pragma unroll
    for(int i = 0; i < tile; ++i) {</pre>
        accum += in[j*tile + i];
    partial[j] = accum;
}
sum = 0;
for(int j = 0; j < nt; ++j) {</pre>
    sum += partial[j];
}
return sum;
```


Hierarchical Compute Organization of Devices

```
tile = (len + gridDim.x - 1)/gridDim.x;
sub_tile = (tile + blockDim.x - 1)/blockDim.x;
accum = 0
#pragma unroll
for(unsigned i = 0; i < sub tile; ++i) {</pre>
   accum += in[blockIdx.x*tile
        + i*blockDim.x + threadIdx.x];
tmp[threadIdx.x] = accum;
syncthreads();
for(unsigned s=1; s<blockDim.x; s *= 2) {</pre>
    if(id >= s)
        tmp[threadIdx.x] +=
            tmp[threadIdx.x - s];
    syncthreads();
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial
```

ECE ILLINOIS

GPU

- 1. Grid
- 2. Block
- 3. Warp
- 4. Thread
- 5. Instruction-level Parallelism

Tangram: Codelet-based Programming Model

```
codelet tag(asso tiled)
 codelet
int sum(const Array<1,int> in) {
                                             int sum(const Array<1,int> in) {
 unsigned len = in.size();
                                               __tunable unsigned p;
 int accum = 0;
                                               unsigned len = in.size();
 for(unsigned i=0; i < len; ++i) {</pre>
                                               unsigned tile = (len+p-1)/p;
   accum += in[i];
                                               return sum( map( sum, partition(in,
                                                   p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1)));
 return accum;
    (a) Atomic autonomous codelet
                                                           (c) Compound codelet using adjacent tiling
codelet coop tag(kog)
int sum(const Array<1,int> in) {
                                             codelet tag(stride tiled)
 __shared int tmp[coopDim()];
                                             int sum(const Array<1,int> in) {
 unsigned len = in.size();
                                               tunable unsigned p;
 unsigned id = coopIdx();
                                               unsigned len = in.size();
 tmp[id] = (id < len)? in[id] : 0;</pre>
                                                                                                            2
                                               unsigned tile = (len+p-1)/p;
 for(unsigned s=1; s<coopDim(); s *= 2) {</pre>
                                               return sum( map( sum, partition(in,
   if(id >= s)
                                                   p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1)));
     tmp[id] += tmp[id - s];
 return tmp[coopDim()-1];
     (b) Atomic cooperative codelet
                                                            (d) Compound codelet using strided tiling
```

Tangram: Composition Example

Tangram Results

ILLINOIS

Need for Run-time Selection

- Statically determining best algorithm could be difficult or infeasible
 - Sometimes it is input dependent
- Even a robust compiler or an expert could select suboptimal sequence of optimization
 - A catastrophic performance loss could happen

DySel Runtime Selects the Best Version

- Application or compiler provides multiple versions
 - Typically 4-10

DySel

- Runtime performs the final selection
 - Apply micro-profiling to sample the performance of each candidate
 - Use a small subset of the actual workload per candidate
 - Contributes to final result
 - Profile candidates concurrently
 - Reduces profiling overhead
- Incurs less than 8% of overhead in the worst observed case

Productive Profiling Mode

• Computation in profiling also contributes to the final output

Workload Space \rightarrow

Case Study: Input-dependent Optimizations

Best optimizations could be input-dependent

Conclusion and Outlook

- Applications have very large appetite for more computing power
 - Both larger scale clusters and faster devices
- Heterogeneity has become the norm for all hardware systems
 - HPC community are currently seeing about 2-3x application speedup
 - Recent positive spiral between deep learning and GPU computing
 - More positive spirals are yet to come
- Performance portability is critical for broad software adoption
 - There is critical need for programming systems with strong support for portability
 - Performance portability involves several dimensions of technical challenges
 - Unfortunately, vendors have not been interested in solving this problem.

Thank you!

Backup Slides

Performance-Portability: One Source for All

Performance-Portability: One Source for All

Coarse-grain CPU threads

ECE ILLINOIS

Fine-grain GPU threads

Coarsening Scheduling Alternatives

Depth First Order (DFO) Scheduling

Breadth First Order (BFO) Scheduling

DFO Scheduling with Vectorization (time progresses as color gets darker)

ECE ILLINOIS

BFO with Vectorization (time progresses as color gets darker)

ILLINOIS

OpenCL/CUDA to CPU Compilers

Performance Results

AMD Intel LC (no vec.) LC

ctcp hst hw kmns lkct Imd lud mrig mriq nw pbfs pf rbfs sad sc sgm spmv tpcf geo

Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations Kim et al., CGO'15

Performance-Portability: One Source for All

Data Placement Options

CPU

- Global memory
- Caches (data tiling)
- Registers

GPU

- Global memory
- Caches (data tiling)
- Registers

+

- Scratchpad memory
- Constant memory
- Texture memory

Rule-based vs. Model-based

- Rule-based (e.g., Jang et al.)
 - Heuristics on the memory access pattern
- Model-based (e.g., PORPLE)
 - Create a model the memory subsystem
 - Slower but more accurate

Tangram's Rule-based Data Placement

Performance-Portability: One Source for All

GPU Tuning: Scan Case Study

1

LINOIS

Performance-Portability: One Source for All

Scratchpad atomics performance (stream compaction)

Motivation Backup

XPACC: THE CENTER FOR EXASCALE SIMULATION OF PLASMA-COUPLED COMBUSTION

- Codesign among diverse areas will be required to reach exascale
 - Every level of the computational stack is a potential bottleneck.
- XPACC code will need to run efficiently and portably on nextgeneration heterogeneous platforms (CPUs, GPUs, Xeon-Phis)

Initial Production Use Results

- NAMD
 - 100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included
 - 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only
 - 768 nodes, XK7 is 1.8X XE6
- Chroma
 - Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the quark masses
 - 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 - 768 nodes, XK7 is 2.4X XE6
- QMCPACK
 - Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
 - 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 - 700 nodes, XK7 is 2.7X XE6

Blue Waters Science Production Applications

- Work with science teams to effectively use GPUs in their production code.
 - ChaNGa cosmological simulation, University of Washington
 - AWP earthquake simulation, Southern California Earthquake Center
- Significant speedup by tuning kernels to specific GPU characteristics
 - Real-world opportunities for performance portability

		Running Time (ms)	Speedup
ChaNGa	Baseline	1.35	2.11
	Optimized	1.16	
AWP	Baseline	61.6	1.33
	Optimized	43.3	

GPU Kernel Optimizations

Levels of GPU Programming Interfaces

Prototype & in development

X10, Chapel, Nesl, Delite, Par4all, Tangram...

Implementation manages GPU threading and synchronization invisibly to user

Next generation

OpenACC, HCC++, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch Same GPU execution model (but less boilerplate)

Current generation

CUDA, OpenCL, DirectCompute

Portability- CPU vs. GPU Code Versions

- Maintaining multiple code versions is extremely expensive
- Most CUDA/OpenCL developers maintain original CPU version
- Many developers report that when they back ported the CUDA/OpenCL algorithms to CPU, they got better performing code
 - Locality, SIMD, multicore
- MxPA is designed to automate this process (John Stratton, Hee-Seok Kim, Izzat El Hajj)

Performance Library

- A major qualifying factor for new computing platforms
 - MKL, BLAS, CUSPARSE, Trust, FFT, OpenCV, CUDNN, etc.
 - Currently redeveloped and hand-tuned for each HW type/generation
- Exa-scale HW expected to have increasing levels of heterogeneity, parallelism, and hierarchy
 - Increasing levels of memory heterogeneity and hierarchy
 - Increase SIMD width and types/number of cores
- Performance library development process must keep up with the HW evolution and diversification
 - Performance portability

Prepared by C. Batten - School of Electrical and Computer Engineering - Cornell University - 2005 - retrieved Dec 12 2012 http://www.csl.cornell.edu/courses/ece5950/handouts/ece5950-overview.pdf

6 cores

2010

2 cores

Portability Backup

Granularity Tuning (OpenCL)

Results of thread coarsening for Parboil benchmarks(written for NVIDIA SIMT GPUs) on AMD Radeon HD6990 (VLIW-5)

* Not a single kernel

ECE ILLINOIS

** Results from more than one dimension coarsening

Results compiled using MulticoreWare's SlotMaximizer

• Reduction – CPU vs. GPU (Part 1)

CPUs favor intra-thread locality

GPUs favor inter-thread locality (within Work Groups)

• Reduction – CPU vs. GPU (Part 2)

GPU 4-level hierarchy

• CPU Parameter Tuning

ECE ILLINOIS

Mandelbrot performance with vector width

Scalar SSE AVX

Results courtesy of intel.com

GPU Parameter Tuning

Non-portable tile sizes

GPU Parameter Tuning

ECE ILLINOIS

Non-portable tile sizes

Bitonic Sort

ECE ILLINOIS

```
int swap(int x, int mask, int dir)
{
    int y = __shfl_xor(x, mask);
    return x < y == dir ? y : x;
}</pre>
```

```
x = swap(x, 0x01, bfe(laneid, 1) \land bfe(laneid, 0)); //
                                                            2
x = swap(x, 0x02, bfe(laneid, 2) \land bfe(laneid, 1)); //
                                                            4
x = swap(x, 0x01, bfe(laneid, 2) \land bfe(laneid, 0));
x = swap(x, 0x04, bfe(laneid, 3) \land bfe(laneid, 2)); // 8
x = swap(x, 0x02, bfe(laneid, 3) \land bfe(laneid, 1));
x = swap(x, 0x01, bfe(laneid, 3) \land bfe(laneid, 0));
x = swap(x, 0x08, bfe(laneid, 4) \land bfe(laneid, 3)); // 16
x = swap(x, 0x04, bfe(laneid, 4) \land bfe(laneid, 2));
x = swap(x, 0x02, bfe(laneid, 4) \land bfe(laneid, 1));
x = swap(x, 0x01, bfe(laneid, 4) \land bfe(laneid, 0));
x = swap(x, 0x10,
                                     bfe(laneid, 4)); // 32
x = swap(x, 0x08)
                                     bfe(laneid, 3));
x = swap(x, 0x04)
                                     bfe(laneid, 2));
                                     bfe(laneid, 1));
x = swap(x, 0x02)
x = swap(x, 0x01,
                                     bfe(laneid, 0));
// int bfe(int i, int k): Extract k-th bit from i
```

// PTX: bfe dst, src, start, len (see p.81, ptx_isa_3.1)

Execution Time int32 (ms)

SMEM per Block (KB)

Slide courtesy of nvidia.com

- Locality-centric work-item scheduling
- Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

Tangram Backup

Devices have different architectural hierarchies

Computation Codelets

Decomposition Codelets

Programmer writes architecture-neurtral computations and decomposition rules

Computation Codelets

Computation Codelets

DySel Backup

- Pronounced as diesel/'dizzəl/
- Imply low-cost and high-efficiency
 - Diesel was cheaper than regular gas, when we submitted the paper... :v
- A small but useful tool to save compiler optimization developers

Motivation

- Statically determining the optimal code could be default or even infeasible
 - Sometimes it is input dependent
- Even a robust compiler or an expert could select suboptimal sequence of optimization
 - A catastrophic performance loss could happen

Example: Intel OpenCL Vectorization for CPU

• Suboptimal heuristic for vectorization in sgemm and spmv-jds

Relax the Constraints

• Instead of asking a compiler for an optimized version which it thought is the best

 \mathbf{I} ILLINO⁸⁷S

- Ask a compiler for multiple versions which are competitive
 - A typical number is around 4-10
 - Let the runtime to do the final selection

Version Selection on Runtime

- We propose DySel for dynamic version selection on runtime
- Apply *micro-profiling* to sample the performance of each candidate

Micro-Profiling

- Profile a kernel with smaller workload
 - A smaller number of work-group/thread block
 - Avoid large impact of performance
- Multiple micro-profiling can be scheduled and even executed concurrently

Productive Profiling Mode

• Computation in profiling also contributes to the final output

Synchronous vs Asynchronous Scheduling

- **Synchronous:** Schedule the remaining workload after the best version is finalized
- <u>Asynchronous</u>: Schedule remaining workload eagerly in a batch using the current best candidate

ECE ILLINOIS

Sync vs Async Scheduling

- Sync
 - Schedule the remaining workload after the best version is finalized
- Async
 - Schedule remaining workload eagerly in a batch using the current best candidate

Sync vs Async Scheduling

Sync vs Async Scheduling

Things I skipped

- The two extra profiling modes
- Applicability and resource requirement of each mode
- What kind of compiler analyses needed for different modes
- Where compilers add profiling code in both CPU and GPU
- More details about DySel runtime using TBB and CUDA

DySel Interface

```
DySelAddKernel(
   string kernel sig,
   func ptr implementation,
   dim3 wa factor,
   vector<int> sandbox_index= [] // argument offsets for
```

- // kernel name
- // kernel implementation
- // work assignment factor

 - // sandboxes/private outputs

);

(a) Kernel Implementation Registration API

```
DySelLaunchKernel(
  string kernel_sig, // kernel name
  bool profiling=true, // profiling activation flag
  enum mode=fully_async // profiling mode
 );
```

(b) Kernel Launch API

Case Study: Locality-centric Scheduling for CPU OpenCL

- Iterate in-kernel loops first or work-item loops for OpenCL on CPU (CGO'15) using MxPA
 - Through analyzing access patterns
- It is open-source, and robust
 - "3.32x over AMD, 1.71x over Intel OpenCL stacks"

Case Study: Locality-centric Scheduling for CPU OpenCL

ECE ILLINOIS

ILLINO⁹⁸S

Case Study: Data Placement for GPU

- Data placement optimizations are crucial for performance on GPUs (TPDS 2011 & MICRO 2014)
 - Although they are not open-source, they did show the transformed results
- Suboptimal decisions due to inaccurate model or improper heuristic

Case Study: Experts' Mixed Optimizations

- Parboil provides multiple versions with different optimization strategies
 - Optimized versions usually run better

ECE ILLINOIS

- Some Optimizations are improper or redundant
- E.g. loop unrolling and prefetching in spmv-jds on Kepler

Case Study: Input-dependent Optimizations

• Best optimizations could be input-dependent

Conclusion

- DySel can deliver high accuracy and low overhead for dynamic version selection in data-parallel programing model
 - Incur less than 8% of overhead in the worst observed case
- Using DySel is like buying an insurance...

MxPA Backup

Contributions

- Exploiting data locality in scheduling work-items for performance
- Real system and measurement demonstrates speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations
 - 18 benchmarks from Parboil and Rodinia
- Nominated for best paper award at CGO'15
- AE certified

OpenCL Programming Model

OpenCL Execution Model

void kernel(...) {
 i₀;
 i₁;
 ...
 i_{a-1};
 barrier();
 i_a;
 i_{a+1};
 ...
 i_{b-1};
}

kernel code

wi = work-item wg = work-group LS = local size GS = global size

ECE ILLINOIS

immediate dependency
 Instruction or instruction block

barrier for work-items in a work-group

How to schedule this execution graph on a multicore CPU?

Work-group Scheduling

- Assign work-groups in whole to different cores
 - Considerations: Locality, Load balance

Region Scheduling

• Serialize barrier-separated regions

 $O \perp S$
Work-item Scheduling

- How to schedule work-items within a region?
 - Different approaches by different compilers

1

Existing Approaches

- Industry
 - Intel
 - AMD (Twin Peaks)
- Academia
 - Karrenberg & Hack
 - SnuCL
 - pocl

Depth First Order (DFO) Scheduling

ECE ILLINOIS

Existing Approaches

- Industry
 - Intel
 - AMD (Twin Peaks)
- Academia
 - Karrenberg & Hack
 - SnuCL
 - pocl

ECE ILLINOIS

DFO Scheduling with Vectorization

(time progresses as color gets darker)

DFO and Locality

ECE ILLINOIS

ILLINOIS

DFO and Locality

ECE ILLINOIS

DFO and Locality

Alternative Schedule: BFO

Breadth First Order (BFO) Scheduling

Alternative Schedule: BFO

BFO with Vectorization (time progresses as color gets darker)

ECE ILLINOIS

DFO's vs. BFO's Impact on Locality

DFO BFO

BFO has better locality for 13 benchmarks, DFO has better locality for 5 benchmarks. No schedule is always the

ECE ILLINOIS

best.

LINOIS

Locality Centric (LC) Scheduling

<u>I</u>ILLINOIS

Locality Centric (LC) Scheduling

		Work-item Stride		
		0	1	Other
Loop Iteration Stride	0	-	DFO	DFO
	1	BFO	-	DFO
	Other	BFO	BFO	-

Classify memory accesses per loop body and tally which schedule has greater popularity

LC's Impact on Locality

ECE ILLINOIS

■ DFO ■ BFO ■ LC

LC captures the best of both schedules

Locality Results

■ AMD ■ Intel ■ LC

LC has best locality for most benchmarks

Performance Results

ECE ILLINOIS

AMD Intel LC (no vec.) LC

ctcp hst hw kmns lkct Imd lud mrig mriq nw pbfs pf rbfs sad sc sgm spmv tpcf geo

LC (with vec.) outperforms AMD (without vec.) and Intel (with vec.) by 3.32x and 1.71x

LC (without vec.) is faster than Intel (with vec.) by 1.04x

ILLINOIS

Summary

- Proposed an alternative scheduling approach to the state-of-the-art
- Demonstrated that no schedule is always best and proposed a static schedule selection
- Outperformed industry implementations in memory system efficiency and performance

Heterogeneous Computing in Blue Waters

- Dual-socket Node
 - One AMD Interlagos chip
 - 8 core modules, 32 threads
 - 156.5 GFs peak performance
 - Consumes 2,504 GB of data per second
 - 32 GBs memory
 - 51 GB/s bandwidth
 - One NVIDIA Kepler chip
 - 1.3 TFs peak performance
 - Consumes 20,800 GB of data per second
 - 6 GBs GDDR5 memory

ECE ILLINOIS

• 250 GB/sec bandwidth

Blue Waters contains 4,224 Cray XK7 compute nodes.

