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A major paradigm shift

 In the 20th Century, we were able to understand, design, and 
manufacture what we can measure
• Physical instruments and computing systems allowed us to see farther, capture 

more, communicate better, understand natural processes, control artificial 
processes…
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 In the 20th Century, we were able to understand, design, and 
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more, communicate better, understand natural processes, control artificial 
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 In the 21st Century, we are able to understand, design, and create what 
we can compute
• Computational models are allowing us to see even farther, going back and 

forth in time, learn better, test hypothesis that cannot be verified any other 
way, create safe artificial processes…



Examples of Paradigm Shift
20th Century

 Small mask patterns

 Electronic microscope and Crystallography 
with computational image processing

 Anatomic imaging with computational 
image processing

 Teleconference

 GPS 

21st Century

 Optical proximity correction

 Computational microscope with initial 
conditions from Crystallography 

 Metabolic imaging sees disease before 
visible anatomic change

 Tele-emersion

 Self-driving cars



Diving deeper into computational microscope

• Large clusters (scale out) allow simulation of biological systems of 
realistic space dimensions
• 0.5Å (0.05 nm) lattice spacing needed for accuracy
• Interesting biological systems have dimensions of mm or larger
• Thousands of nodes are required to hold and update all the grid points.

• Fast nodes (scale up) allow simulation at realistic time scales
• Simulation time steps at femtosecond (10-15 second) level needed for accuracy
• Biological processes take miliseconds or longer
• Current molecular dynamics simulations progress at about one day for each 

10-100 microseconds of the simulated process.



Blue Waters Science Breakthrough Example
 Determination of the structure of the HIV 

capsid at atomic-level

 Collaborative effort of experimental groups at 
the U. of Pittsburgh and Vanderbilt U., and the 
Schulten’s computational team at the U. of 
Illinois. 

 64-million-atom HIV capsid simulation of the 
process through which the capsid 
disassembles, releasing its genetic material

 a critical step in understanding HIV infection 
and finding a target for antiviral drugs. 



Post-Dennard technology pivot -
heterogeneity



Dennard Scaling of MOS Devices

 In this ideal scaling, as L → α*L

• VDD → α*VDD, C → α*C, i → α*i

• Delay = CVDD/I scales by α, so f → 1/α

• Power for each transistor is CV2*f and scales by α2

• keeping total power constant for same chip area

JSSC Oct 1974, page 256



Frequency Scaled Too Fast 1993-2003
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Post-Dennard Pivoting

 Multiple cores with more moderate clock frequencies 

 Heavy use of vector execution

 Employ both latency-oriented and throughput-oriented cores

 3D packaging for more memory bandwidth



Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch12.5 PF
1.6 PB DRAM

$250M

49,504 CPUs -- 4,224 GPUs



CPUs: Latency Oriented Design 

 High clock frequency

 Large caches
• Convert long latency memory accesses 

to short latency cache accesses

 Sophisticated control
• Branch prediction for reduced branch 

latency

• Data forwarding for reduced data 
latency

 Powerful ALU
• Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU



GPUs: Throughput Oriented Design

 Moderate clock frequency

 Small caches
• To boost memory throughput

 Simple control
• No branch prediction
• No data forwarding

 Energy efficient ALUs
• Many, long latency but heavily pipelined 

for high throughput

 Require massive number of threads 
to tolerate latencies

DRAM

GPU



Applications Benefit from Both CPU and GPU 

 CPUs for sequential parts where 
latency matters
• CPUs can be 10+X faster than GPUs 

for sequential code

 GPUs for parallel parts where 
throughput wins
• GPUs can be 10+X faster than CPUs 

for parallel code



Initial Production Use Results
Application Description Application Speedup

NAMD
100 million atom benchmark with Langevin dynamics and 

PME once every 4 steps, from launch to finish, all I/O 
included

1.8

Chroma
Lattice QCD parameters: grid size of 483 x 512 running at the 

physical values of the quark masses
2.4

QMCPACK
Full run Graphite 4x4x1 (256 electrons), QMC followed by 

VMC
2.7

ChaNGa
Collisionless N-body stellar dynamics with multipole

expansion and hydrodynamics
2.1

AWP
Anelastic wave propagation with staggered-grid finite-

difference and realistic plastic yielding
1.2



An example of positive 
application-technology spiral
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DEEP LEARNING IN COMPUTER VISION

Deep Learning Object Detection

DNN + Data + HPC
Traditional Computer Vision

Experts + Time
Deep Learning Achieves 
“Superhuman” Results
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Slide courtesy of Steve Oberlin, NVIDIA
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DIFFERENT MODALITIES OF REAL-WORLD DATA

Image Vision features Detection

Images/video

Audio Audio features Speaker ID

Audio

Text

Text Text  features

Text classification, machine 

translation, information 

retrieval, ....

Slide courtesy of Andrew Ng, Stanford University



A long way to go towards cognitive computing

Image 
Recognition

Text Extraction

Human 
Instructions

Speech 
Recognition

Natural 
Language 
Processing

Diagram 
Understanding

IR

Knowledge 
Indexing

Knowledge 
Inferencing

Programming Framework

Hardware Platform



More Heterogeneity Is Coming

 Beyond traditional CPUs and GPUs
• FPGAs (e.g., Microsoft FPGA cloud)

• ASICs (e.g., Google’s TPU)

 Beyond traditional DRAM
• Stacked DRAM for more memory bandwidth

• Non-volatile RAM for memory capacity

• Near/in memory computing for reduced power used in data movement



Some Lessons Learned

• Throughput computing using GPUs can result in 2-3X end-to-end 
application-level performance improvement

• GPUs, big data and deep learning have formed a positive spiral for the 
industry

• GPU computing has so far had narrow but deep impact in the 
application space
• Data movement overhead and small GPU memory

• Unified memory, HBM, NVLink, and HSA-style systems will help

• Low-level programming interfaces with poor performance portability



Engineering high-efficiency software for 
heterogeneous computing



Performance-Portability: One Source for All
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Coarsening Scheduling Alternatives

Depth First Order 
(DFO) Scheduling

DFO Scheduling 
with Vectorization
(time progresses as color 

gets darker)

Breadth First 
Order (BFO) 
Scheduling

BFO with 
Vectorization

(time progresses as color 
gets darker)
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Hierarchical Compute Organization of Devices

CPU

1. Process

2. Thread (vector-capable)

3. Vector Lane

4. Instruction-level Parallelism

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism



Hierarchical Compute Organization of Devices

CPU

1. Process

2. Thread (vector-capable)

3. Vector Lane

4. Instruction-level Parallelism

nt = omp_get_num_threads();
tile = (len + nt – 1)/nt;
#pragma omp parallel
{ 

j = omp_get_thread_num();
accum = 0;
#pragma unroll
for(int i = 0; i < tile; ++i) {

accum += in[j*tile + i];
}
partial[j] = accum;

}
sum = 0;
for(int j = 0; j < nt; ++j) {

sum += partial[j];
}
return sum;



Hierarchical Compute Organization of Devices

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism

tile = (len + gridDim.x – 1)/gridDim.x;
sub_tile = (tile + blockDim.x – 1)/blockDim.x;
accum = 0
#pragma unroll
for(unsigned i = 0; i < sub_tile; ++i) {

accum += in[blockIdx.x*tile
+ i*blockDim.x + threadIdx.x];

}
tmp[threadIdx.x] = accum; 
__syncthreads();
for(unsigned s=1; s<blockDim.x; s *= 2) {

if(id >= s)
tmp[threadIdx.x] +=

tmp[threadIdx.x - s];
__syncthreads();

}
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial



Tangram: Codelet-based Programming Model
__codelet
int sum(const Array<1,int> in) {

unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {

accum += in[i];
}
return accum;

}
(a) Atomic autonomous codelet

__codelet __tag(asso_tiled) 
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in,

p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));
}

__codelet __coop __tag(kog)
int sum(const Array<1,int> in) {

__shared int tmp[coopDim()];        
unsigned len = in.size();
unsigned id = coopIdx();
tmp[id] = (id < len)? in[id] : 0;
for(unsigned s=1; s<coopDim(); s *= 2) {

if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

}
(b) Atomic cooperative codelet

(c) Compound codelet using adjacent tiling 

(d) Compound codelet using strided tiling

__codelet __tag(stride_tiled) 
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in, 

p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));
}

cb

?

pc

? ? ?

?

pd

? ? ?

ca



Tangram: Composition Example

?

?

cb

?

pc

? ? ?

?

pd

? ? ?

ca

cb

pc

ca ca ca

__syncthreads()

pc

ca ca ca

?

__syncthreads()

pc

ca ca ca

ca



Tangram Results
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Need for Run-time Selection

• Statically determining best algorithm could be difficult or infeasible
• Sometimes it is input dependent

• Even a robust compiler or an expert could select suboptimal 
sequence of optimization
• A catastrophic performance loss could happen 

35



DySel Runtime Selects the Best Version

• Application or compiler provides multiple versions
• Typically 4-10

• Runtime performs the final selection
• Apply micro-profiling to sample the performance of each candidate

• Use a small subset of the actual workload per candidate
• Contributes to final result

• Profile candidates concurrently
• Reduces profiling overhead

• Incurs less than 8% of overhead in the worst observed case

36



Productive Profiling Mode

• Computation in profiling also contributes to the final output

37

profile 

profile 

compute 
Version A 

Version B 

Output 

Workload Space →  

← Probational Period →  ← Tenured Period →  



Case Study: Input-dependent Optimizations

• Best optimizations could be input-dependent

38
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Conclusion and Outlook

• Applications have very large appetite for more computing power
• Both larger scale clusters and faster devices

• Heterogeneity has become the norm for all hardware systems
• HPC community are currently seeing about 2-3x application speedup
• Recent positive spiral between deep learning and GPU computing 
• More positive spirals are yet to come

• Performance portability is critical for broad software adoption 
• There is critical need for programming systems with strong support for 

portability
• Performance portability involves several dimensions of technical challenges
• Unfortunately, vendors have not been interested in solving this problem.



Thank you!
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Coarse-grain CPU threads Fine-grain GPU threads

Automatic 
Parallelization

Thread Coarsening



Coarsening Scheduling Alternatives

Depth First Order 
(DFO) Scheduling

DFO Scheduling 
with Vectorization
(time progresses as color 

gets darker)

Breadth First 
Order (BFO) 
Scheduling

BFO with 
Vectorization

(time progresses as color 
gets darker)



OpenCL/CUDA to CPU Compilers
Basic Coarsening

(DFO)
Vectorization

Locality-aware Scheduling 
(DFO vs. BFO)

AMD No No No

MCUDA Yes No No

SnuCL Yes No No

Karrenberg
& Hack

Yes Yes No

pocl Yes Yes No

Intel Yes Yes No

MxPA Yes Yes Yes



0

0.2

0.4

0.6

0.8

1

ctcp hst hw kmns lkct lmd lud mrig mriq nw pbfs pf rbfs sad sc sgm spmv tpcf geo

AMD Intel LC (no vec.) LC

Performance Results

Sp
ee

d
u

p
(n

o
rm

a
liz

ed
 t

o
 f

a
st

es
t)

Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

Kim et al., CGO’15



Performance-Portability: One Source for All

Levels of 
Hierarchy

Codelet
Composition

Memory 
Characteristics

Automatic Data 
Placement

Resource 
Sizes

Autotuning

Micro-
architecture

Algorithmic 
Choice

Granularity 
of Parallelism

Coarsening

Challenges

Solutions



Data Placement Options
CPU

 Global memory

 Caches (data tiling)

 Registers

GPU

 Global memory

 Caches (data tiling)

 Registers

+

 Scratchpad memory

 Constant memory

 Texture memory



Rule-based vs. Model-based

• Rule-based (e.g., Jang et al.)
• Heuristics on the memory access pattern 

• Model-based (e.g., PORPLE)
• Create a model the memory subsystem

• Slower but more accurate



Tangram’s Rule-based Data Placement
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GPU Tuning: Scan Case Study
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• Codesign among diverse areas will be required to reach exascale
• Every level of the computational stack is a potential bottleneck.

• XPACC code will need to run 
efficiently and portably on next-
generation heterogeneous 
platforms (CPUs, GPUs, Xeon-
Phis)



Initial Production Use Results 

• NAMD
• 100 million atom benchmark with Langevin dynamics and PME once every 4 steps, 

from launch to finish, all I/O included
• 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only
• 768 nodes, XK7 is 1.8X XE6

• Chroma
• Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the 

quark masses
• 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
• 768 nodes, XK7 is 2.4X XE6

• QMCPACK
• Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
• 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
• 700 nodes, XK7 is 2.7X XE6



Blue Waters Science Production Applications

• Work with science teams to effectively use GPUs in their production code.
• ChaNGa – cosmological simulation, University of Washington
• AWP – earthquake simulation, Southern California Earthquake Center

• Significant speedup by tuning kernels to specific GPU characteristics
• Real-world opportunities for performance portability

Running Time (ms) Speedup
ChaNGa Baseline 1.35 2.11

Optimized 1.16
AWP Baseline 61.6 1.33

Optimized 43.3

GPU Kernel Optimizations



Levels of GPU Programming Interfaces

Current generation CUDA, OpenCL, DirectCompute

Next generation OpenACC, HCC++, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch

Same GPU execution model (but less boilerplate)

Prototype & in development X10, Chapel, Nesl, Delite, 
Par4all, Tangram...

Implementation manages GPU threading and synchronization
invisibly to user



Portability- CPU vs. GPU Code Versions

 Maintaining multiple code versions is extremely expensive 

 Most CUDA/OpenCL developers maintain original CPU version

 Many developers report that when they back ported the 
CUDA/OpenCL algorithms to CPU, they got better performing code
• Locality, SIMD, multicore

 MxPA is designed to automate this process  (John Stratton, Hee-Seok Kim, 
Izzat El Hajj)



Performance Library

 A major qualifying factor for new computing platforms
• MKL, BLAS, CUSPARSE, Trust, FFT, OpenCV, CUDNN, etc.

• Currently redeveloped and hand-tuned for each HW type/generation

 Exa-scale HW expected to have increasing levels of heterogeneity, 
parallelism, and hierarchy
• Increasing levels of memory heterogeneity and hierarchy

• Increase SIMD width and types/number of cores

 Performance library development  process must keep up with the HW 
evolution and diversification
• Performance portability 

SCF 2016
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Portability Backup



Results of thread coarsening for Parboil benchmarks(written for NVIDIA SIMT GPUs) 
on AMD Radeon HD6990 (VLIW-5)

Granularity Tuning (OpenCL)

Results compiled using MulticoreWare’s SlotMaximizer

* Not a single kernel
** Results from more than one dimension coarsening



CPUs favor intra-thread locality
GPUs favor inter-thread locality 

(within Work Groups)

• Reduction – CPU vs. GPU (Part 1) 

…

Tree-shape
parallel reduction



CPU 2-level hierarchy GPU 4-level hierarchy

…

• Reduction – CPU vs. GPU (Part 2)

Collect from Work 
Group partial 
results



Mandelbrot performance with vector width
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• CPU Parameter Tuning
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Slide courtesy of nvidia.com
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CPU Xeon Phi

C/FORTRAN

OpenMP, TBB, 
Pthreads, Cilk…

Multicore GPU

+ SIMD
Intrinsics

Verilog, VHDL

FPGA

CUDA, OpenCLMxPA

• Locality-centric work-item scheduling

• Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations



CPU Xeon Phi
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Tangram



Tangram Backup



Devices have different 
architectural hierarchies



Computation Codelets

Decomposition Codelets

Programmer writes 
architecture-neurtral

computations and 
decomposition rules



Computation Codelets

Decomposition Codelets

Compiler maps 
computations 

to each level of 
the hierarchy…



Computation Codelets

Decomposition Codelets

…and 
decomposition 
rules between 

each level



DySel Backup



• Pronounced as diesel/ˈdiːzəl/

• Imply low-cost and high-efficiency
• Diesel was cheaper than regular gas, when we submitted the paper… :v

• A small but useful tool to save compiler optimization developers

84



Motivation

• Statically determining the optimal code could be default or even 
infeasible
• Sometimes it is input dependent

• Even a robust compiler or an expert could select suboptimal 
sequence of optimization
• A catastrophic performance loss could happen 

85



Example:  Intel OpenCL Vectorization for CPU

• Suboptimal heuristic for vectorization in sgemm and spmv-jds

86
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Relax the Constraints 

• Instead of asking a compiler for an optimized version which it thought 
is the best

• Ask a compiler for multiple versions which are competitive 
• A typical number is around 4-10

• Let the runtime to do the final selection
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Version Selection on Runtime

• We propose DySel for dynamic version selection on runtime

• Apply micro-profiling to sample the performance of each candidate
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Micro-Profiling

• Profile a kernel with smaller workload
• A smaller number of work-group/thread block

• Avoid large impact of performance 

• Multiple micro-profiling can be scheduled and even executed 
concurrently
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Productive Profiling Mode

• Computation in profiling also contributes to the final output
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Synchronous vs Asynchronous Scheduling

• Synchronous: Schedule the remaining workload after the best version is finalized

• Asynchronous: Schedule remaining workload eagerly in a batch using the current 
best candidate
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Sync vs Async Scheduling

• Sync 
• Schedule the remaining workload after the best version is finalized

• Async
• Schedule remaining workload eagerly in a batch using the current best 

candidate
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Sync vs Async Scheduling
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Sync vs Async Scheduling
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Things I skipped

• The two extra profiling modes

• Applicability and resource requirement of each mode

• What kind of compiler analyses needed for different modes 

• Where compilers add profiling code in both CPU and GPU

• More details about DySel runtime using TBB and CUDA
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DySel Interface

	DySelLaunchKernel(	
				string	kernel_sig,						//	kernel	name	
				bool	profiling=true,				//	profiling	activation	flag	
				enum	mode=fully_async			//	profiling	mode	
		);	

	DySelAddKernel(	
				string	kernel_sig,															//	kernel	name	
				func_ptr	implementation,									//	kernel	implementation	
				dim3	wa_factor,																		//	work	assignment	factor		
				vector<int>	sandbox_index=	[]				//	argument	offsets	for		

																																					//	sandboxes/private	outputs		
		);	

(a) Kernel Implementation Registration API 

(b) Kernel Launch API 
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Case Study: Locality-centric Scheduling for 
CPU OpenCL
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• Iterate in-kernel loops first or work-item loops for OpenCL on CPU 
(CGO’15) using MxPA
• Through analyzing access patterns

• It is open-source, and robust
• “3.32x over AMD, 1.71x over Intel OpenCL stacks”



Case Study: Locality-centric Scheduling for 
CPU OpenCL
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Case Study: Data Placement for GPU

• Data placement optimizations are crucial for performance on GPUs (TPDS 2011 & MICRO 2014)
• Although they are not open-source, they did show the transformed results 

• Suboptimal decisions due to inaccurate model or improper heuristic
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Case Study: Experts’ Mixed Optimizations

• Parboil provides multiple versions with different optimization strategies
• Optimized versions usually run better

• Some Optimizations are improper or redundant

• E.g. loop unrolling and prefetching in spmv-jds on Kepler
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Case Study: Input-dependent Optimizations

• Best optimizations could be input-dependent
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Conclusion

• DySel can deliver high accuracy and low overhead for dynamic version 
selection in data-parallel programing model
• Incur less than 8% of overhead in the worst observed case

• Using DySel is like buying an insurance…
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MxPA Backup



Contributions

• Exploiting data locality in scheduling work-items for performance

• Real system and measurement demonstrates speedups of 3.32x and
1.71x over AMD and Intel OpenCL implementations
• 18 benchmarks from Parboil and Rodinia

• Nominated for best paper award at CGO’15

• AE certified



OpenCL Programming Model

Device

Global Memory

Compute Unit

Local Memory

Compute Unit

Local Memory

Compute Unit

Local Memory

…

Kernel

Work Group Work Group Work Group…
Work
Items



void kernel(…) {
i0;
i1;
…
ia-1;
barrier();
ia;
ia+1;
…
ib-1;

}

kernel code

immediate dependency
ii Instruction or instruction block

barrier for work-items in a work-group

wi = work-item
wg = work-group
LS = local size
GS = global size

OpenCL Execution Model

region0

region1

i1

ia-1

ia

ia+1

in-1

i0

wiLS-1 wiLS wiLS+1 wi2LS-1wi0 wi1 wiGS-1

wg0 wg1 wgGS/LS-1

How to schedule this execution 
graph on a multicore CPU?



Work-group Scheduling

• Assign work-groups in whole to different cores
• Considerations: Locality, Load balance

CPU Core CPU Core CPU Core CPU Core



Region Scheduling

• Serialize barrier-separated regions



Work-item Scheduling

• How to schedule work-items within a region?
• Different approaches by different compilers



Existing Approaches

• Industry
• Intel

• AMD (Twin Peaks)

• Academia
• Karrenberg & Hack

• SnuCL

• pocl

Depth First Order (DFO) Scheduling



Existing Approaches

• Industry
• Intel

• AMD (Twin Peaks)

• Academia
• Karrenberg & Hack

• SnuCL

• pocl

DFO Scheduling with Vectorization
(time progresses as color gets darker)



Memory Access Patterns
e.g. bfs
(each thread traverses a list of 
neighbors)

e.g. sgemm
(threads computing adjecent
outputs access adjacent inputs)

e.g. kmeans
(all threads loop over the same 
mean values)



DFO and Locality



DFO and Locality



DFO and Locality



Alternative Schedule: BFO

Breadth First Order (BFO) Scheduling



Alternative Schedule: BFO

BFO with Vectorization
(time progresses as color gets darker)



DFO’s vs. BFO’s Impact on Locality
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BFO has better locality for 13 benchmarks, DFO has better locality for 5 benchmarks. No schedule is always the 
best.



DFO scheduling
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Locality Centric (LC) Scheduling
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LC’s Impact on Locality
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Locality Results
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Summary

• Proposed an alternative scheduling approach to the state-of-the-art

• Demonstrated that no schedule is always best and proposed a static
schedule selection

• Outperformed industry implementations in memory system efficiency
and performance



Heterogeneous Computing in Blue Waters

Blue Waters contains 4,224 Cray XK7 
compute nodes.

 Dual-socket Node
• One AMD Interlagos chip

• 8 core modules, 32 threads
• 156.5 GFs peak performance

• Consumes 2,504 GB of data per 
second

• 32 GBs memory
• 51 GB/s bandwidth

• One NVIDIA Kepler chip
• 1.3 TFs peak performance

• Consumes 20,800 GB of data per 
second

• 6 GBs GDDR5 memory
• 250 GB/sec bandwidth


