Intro to Deep Learning

ECE408 / CS483 / CSE408 Carl Pearson October 26, 2017

pearson@illinois.edu

Outline

Introduction

Machine Learning Basics

How to solve problems you can't formally describe

How to determine what features of data are relevant

The story so far

The problem: easily defined The algorithm: easily specified The output: doesn't take too long to produce

Chess as an Al Success (1)

- Easy to formalize
 - 64 locations, 32 pieces
 - Few allowable moves
- Score each leaf in a tree of possible moves
- Proceed down path with best score

2-ply game tree for tic-tac-toe

Chess as an Al Success (2)

Deep Blue defeated Gary Kasparov in 1997

- Hard to perform
 - ~30 legal moves per position
 - 10¹⁵ moves for 10-ply lookahead
 - \circ 30 years at 1M positions/sec
- Heuristics, pruning, parallel search, and fast computers

Cyc: Extending Rule-based Systems to the Real World

Comprehensive ontology and knowledge base of common sense

Cyc reasons about formal statements about the world

The "Machine Learning" Approach

Challenge

Hard to formalize the problem

Solution

Don't formalize the problem

Let the machine learn from experience

Classic Machine Learning

Learn how features are associated with outputs

Does not help choose features

You may have heard of...

Naive Bayes

Features as independent contributors to output

Logistic Regression

Learn how to weight each feature to output, usually through gradient descent*

* more on this in a later lecture...

MCMLIV MDCCCVI

- MCCCVI CXXXXX

- **1806**

Importance of Data Representation

Arithmetic

MCMLIV - MDCCCVI

1945 - 1806

Importance of Data Representation

Arithmetic

MCMLIV - MDCCCVI

Searching

Binary Tree vs Linked list

1945 - 1806

х

х

Different features for different tasks

Which Data Features are Relevant?

- Detecting a car in an image
- Cars have wheels \Rightarrow possible feature: presence of a wheel
- Can we describe the pixel values that make up a wheel:
 - Circle-shaped?
 - Dark around the perimeter?

Which Data Features are Relevant?

- Detecting a car in an image
- Cars have wheels => possible feature: presence of a wheel
- Can we describe the pixel values that make up a wheel:
 - Circle-shaped?
 - Dark around the perimeter?
- But what about
 - \circ Occlusion
 - Perspective
 - \circ Shadows
 - White-walled tires
 - 0 ...

Identify factors of variation that explain data

- Unobserved objects or forces that affect observed quantities
- Mental constructs that provide simplifying explanations or inferred causes
- Speech:
 - Age, sex, accent, words being said
- Car:
 - \circ Position, color, angle of sun
- Many factors of variation influence each piece of observed data

The "Representation Learning" Approach

Challenge

Which data features are relevant?

Solution

Learn the features too!

(Looking ahead) Deep Learning: a deep hierarchy of concepts

Machine Learning Ability to acquire knowledge by extracting patterns from data

Deep Learning

• A type of representation learning

 Representations expressed in terms of other representations

The "Deep Learning" Approach

Challenge

Hard to formalize the problem

Which data features are relevant?

Solution

Don't formalize the problem

Let the machine learn from experience

Hierarchy of concepts to capture simple and complicated features

Learn the hierarchy too!

Other Resources

www.deeplearningbook.org

CS440: Artificial Intelligence CS446: Machine Learning CS447: Natural Language Processing CS498 AMO: Applied Machine Learning CS546: Machine Learning and Natural Language CS548: Models of Cognitive Processes CS598 PS: Machine Learning for Signal Processing CS598 TEL: Machine Learning Theory ECE448 Intro to Artificial Intelligence ECE598 NS: Machine Learning in Silicon ECE598 PV: Learning: Algorithms and Models STAT542: Statistical Learning