
A Fast and Massively-Parallel Inverse
Solver for Multiple-Scattering Tomographic

Image Reconstruction

Mert Hidayetoğlu, Carl Pearson, Izzat El Hajj, Levent Gürel, Weng Cho Chew, and Wen-mei Hwu

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract—We present a massively-parallel solver for large
Helmholtz-type inverse scattering problems. The solver employs
the distorted Born iterative method for capturing the multiple-
scattering phenomena in image reconstructions. This method
requires many full-wave forward-scattering solutions in each
iteration, constituting the main performance bottleneck with
its high computational complexity. As a remedy, we use the
multilevel fast multipole algorithm (MLFMA). The solver scales
among computing nodes using a two-dimensional parallelization
strategy that distributes illuminations in one dimension, and
MLFMA sub-trees in the other dimension. Multi-core CPUs and
GPUs are used to provide per-node speedup. We demonstrate a
76% efficiency when scaling from 64 GPUs to 4,096 GPUs. The
paper provides reconstruction of a 204.8λ×204.8λ image (4M
unknowns) executed on 4,096 GPUs in near-real time (almost 2
minutes). To the best of our knowledge, this is the largest full-
wave inverse scattering solution to date, in terms of both image
size and computational resources.

I. INTRODUCTION

Real-life imaging applications in medicine, remote sensing,

non-destructive testing, and geophysical exploration involve

illuminating unknown objects with propagating waves, mea-

suring the scattered field, and performing tomographic re-

constructions based on these measurements. The widespread

approach for keeping the computational complexity of such

reconstructions low is making the simplifying assumption that

a wave is scattered only once by the object. Unfortunately, this

single-scattering assumption cannot provide accurate images

in many imaging scenarios.

The distorted Born iterative method (DBIM) [1] is a full-

wave method that is deliberately designed for solving inverse-

scattering problems while accounting for all wave phenomena,

including multiple scattering. Extensive research has been

done on this method in many application areas, including

geophysical applications for finding a buried scatterer [2],

[3], tomographic reconstructions with ultrasonic waves [4],

[5], [6], and reconstructions with electromagnetic waves of

microwave [7] and radar [8] frequencies. Accounting for

multiple scattering introduces mathematical nonlinearity to

the reconstruction. This nonlinearity requires solving many

forward-scattering problems. Each forward solution involves a

matrix inversion, where direct approaches such as LU decom-

position and singular value decomposition have prohibitive,

i.e., O(N3), computational and storage complexity, where N

is the number of pixels. Because of the high computational

burden of DBIM, reported results have so far been limited to

reconstructions of only tens of wavelengths in size.

The multilevel fast multipole algorithm (MLFMA) is a fast

and efficient algorithm that can solve scattering and radiation

problems governed by the Helmholtz equation with reduced-

complexity [9], [10]. However, the parallelization of MLFMA

is not trivial because of its complicated structure. Moreover,

the reduced complexity features of MLFMA make it extremely

difficult for a parallel implementation to achieve significant

speedup, and the challenges differ across application domains.

Therefore, a scalable parallel implementation of MLFMA

in general, and for imaging in particular, remains to be a

challenge when executing on large supercomputers.

In this paper, we present the detailed implementation of a

DBIM-based inverse scattering solver parallelized with MPI,

OpenMP, and CUDA. To the best of our knowledge, our

solver is the first scalable inverse scattering solver for imaging

that is fully enhanced with MLFMA. The complexity of

our application is O(N). This low complexity enables us to

solve larger scale problems while capturing multiple-scattering

effects for more accurate images. We report the achieved scal-

ability and performance on Blue Waters, a massively parallel

supercomputer at the National Center for Supercomputing

Applications (NCSA). To the best of our knowledge, the

results presented herein include the largest full-wave inverse

scattering image reconstruction that has been achieved to date

and the largest number of processors scaled to for this problem.

The imaging domain is 204.8λ×204.8λ (4M1 unknowns) and

the solution is performed on 4,096 GPUs in near-real time (in

almost 2 minutes).

Publicly available resources can be found under Github

repository FFW-Tomo.

II. MOTIVATION

Conventional diffraction-tomography imaging relies on the

Born approximation [11] which assumes that the incident field

is scattered only once from the object. This assumption is

only accurate when the imaged object is a few wavelengths

in size or has low permittivity contrast. It breaks down

1Throughout this paper, uses of k and M for enumerating unknowns refer
to 210 and 220, respectively.

64

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00017

Single-scattering
Reconstruction

Multiple-scattering
Reconstruction

Original Object
with High Contrast

Fig. 1. Reconstruction of high contrast homogeneous annular object using
single-scattering (linear) and multiple-scattering (nonlinear) approaches.

�������	
��������
��
��	��
����

���������	
�������
��
��	��
����

������������
���������
������������������

� �

���

Fig. 2. Reconstruction with transmitters and receivers at a limited angle
using single-scattering (linear) and multiple-scattering (nonlinear) approaches.
Capturing multiple-scattering waves is critical for detecting the parts of the
object whose single-scattering waves move away from the detectors.

when the object is large or has high contrast resulting in

strong higher-order scattering effects. These terms can be used

to represent the multiple-scattering phenomena. DBIM is a

full-wave method that provides a mathematically sound way

for capturing these multiple-scattering effects for obtaining

accurate images. A simple example is shown in Fig. 1 for how

a high contrast image is more accurately reconstructed using

nonlinear multiple-scattering reconstruction than using con-

ventional single-scattering reconstruction. Capturing multiple-

scattering effects is also useful in cases where transmitters and

receivers are exposed to the object at a limited angle, in which

case single-scattering waves may be scattered away from the

receivers as shown in Fig. 2. More on the limited-angle case

can be found in [12].

The main problem with capturing the higher-order nonlinear

multiple-scattering terms is the high computational burden

they introduce. These terms create the need for a matrix

inversion; hence a forward solver, in every iteration which has

O(N3) complexity with direct approaches such as SVD, QR,

or LU decompositions, and O(N2) complexity with iterative

solutions such as CG or BiCG [13]. Fast multipole methods

can solve such problems with O(N1.4) computational com-

plexity [14], for the volumetric problems of interest. MLFMA

further decreases the computational complexity from O(N1.4)
to O(N) [9], [10]. Reducing the complexity of multiple-

scattering solvers with MLFMA was attempted by Hesford

and Chew [15]. However, their approach has limited parallel

scalability, solving only a small problem on few computational

resources (see Section VII for details).

To the best of our knowledge, our solver is the first scalable

inverse scattering solver for imaging that is fully enhanced

with MLFMA. In prior work [16], [17], [18], we have given

a brief overview of our solver and presented results for a

Inhomogeneous Dielectric
Object

Imaging Domain �

�()

1

2

� 	�

	1

	2

Tr
an

sm
itt

er
s Receivers

Pixel
Grid

Fig. 3. The application reconstructs the unknown scatterer in the imaging
domain. T transmitters illuminate the object. Reconstruction is performed by
processing the scattered field collected by R receivers.

102.4λ×102.4λ (1M unknowns) imaging domain scaled to

1,024 CPUs [16], [17] and 256 GPUs [18]. The GPU paral-

lelization is only performed across illuminations, not MLFMA

sub-trees, which limits its scalability. In this paper, we present

a detailed description of our solver and demonstrate its power

on a larger imaging domain of size 204.8λ×204.8λ (4M
unknowns). We also simultaneously parallelize illuminations

and MLFMA sub-trees among GPU nodes, allowing us to

scale to 4,096 GPUs. To the best of our knowledge, this is

the largest problem solved to date and the largest number of

processors scaled to for this problem.

III. APPLICATION DESCRIPTION

A. Inverse Scattering Solver

Fig. 3 depicts the geometry of the imaging setup. We assume

an inhomogeneous dielectric object. The object is located in

the imaging domain V with equal side lengths of D. The

object is illuminated by T transmitters, and the scattered field

is collected by R receivers. For numerical solutions, V is

discretized with N square pixels. To obtain a good resolution

of the field, the size of the pixels is selected to be λ/10, where

λ is the wavelength of the illumination wave in free space.

Fig. 4 summarizes the overall workflow of our application.

The inverse scattering solver takes the incident field φinc emit-

ted by the transmitters and the scattered field φmea measured

by the receivers and uses them to reconstruct the final object

O. It begins with a guessed object Ob and iteratively refines it

until convergence using the conjugate-gradient optimization.

Each iteration begins with a scattering solver that uses the

given incident field φinc
t of a transmitter t (also called an

illumination) to compute a scattered field φsca
t based on the

guessed object. Illuminations from different transmitters can

be processed independently. The scattering solver involves

solving a forward problem according to equations (E1) and

(E2) in Fig. 4. Next, the computed scattered field along with

the actually measured scattered field φmea
t are used to compute

a partial gradient ∇Φt. Computing the gradient involves

solving another forward problem according to equations (E3)

and (E4) in Fig. 4. The gradients are then combined from

the different illuminations. After that, the gradient is used to

compute a step size δOt. Computing the step size involves

solving yet another forward problem according to equations

65

���������	
���

�
�
�

�
��

��

�

����

����

�

��
���

��
���

��
���

��� ���

������!�����	
"�!

�	!#�!���	
"�!

���� �����!������

�	!#�!���	
"�!

������������$�

�	!#�!���	
"�!

��
���

��
���

��
���

��� ���

������!�����	
"�!

�	!#�!���	
"�!

���� �����!������

�	!#�!���	
"�!

������������$�

�	!#�!���	
"�!

��
���

��
���

��
���

��� ���

������!�����	
"�!

�	!#�!���	
"�!

���� �����!������

�	!#�!���	
"�!

������������$�

�	!#�!���	
"�!

��������
����%�������������
�
����%����&'!���&�����!������
�
�%�����
�!��	�&�!'�����	�����
����%��	��'����&�����!������
�
��%������!	'������
�
��%����!����������!	'���	�����
��%��	&���'����	���!������
��%�&���
��(���%�����!����	�����!���&
�%���!�"���"��	��!��	!

�������������������������
)�*+��� � ! ����

"�����

)�,+����� � ������

���������������������
)�.+�� � �� # �� ! ����

"� ��

)�/+��� � �$ ���� ! ����

)�0+��� � !��
%& '

�%& '

�	
�

!�
"�

�	

�

��
�#$

�%
��

& *�

'

�����

'''

�����

'''
'''

(
�(!

����	��� ����	���

��&�&���1�
&

��"�
�0

��"�
�/

��&�������1�
&

�'
���	
�
�1���&�	�&

�	��

�1���&�	�&

��"�
�.

��
!�
��

�

�"
�

'�
��	

�&
�
��

!�
��

�

�"
�

'�
��	

�&

�
�

�
�

�
��

��

��

��

Fig. 4. The overall application workflow. The MLFMA operation dominates performance: it is used twice per iteration of the forward solver, which is itself
used three times per transmitter per iteration of the inverse scattering solver.

(E3) and (E5) in Fig. 4. Finally, the steps computed from

each illumination are combined and used to update the guessed

object for the next inverse scattering solver iteration. Interested

readers can refer to Section VI for the detailed formulation of

the problem and the derivation of these equations.

The forward solver is the key component of the inverse

scattering solver, invoked three times per transmitter per iter-

ation, and dominating the performance of the application. We

use the biconjugate gradient stabilized method (BiCGS) [13]

for the forward solver, which is itself an iterative method. The

dominant operation in BiCGS is a matrix-vector multiplication

that occurs twice per iteration. For this operation, we use

MLFMA to reduce the computational complexity. Details of

BiCGS are omitted in Fig. 4 for brevity.

B. MLFMA

MLFMA provides the foundation for the algorithmic

speedup of our solver by enabling matrix-vector multiplica-

tions of the pairwise interaction matrix G0 with only O(N)
complexity (see Section III-C). This is achieved by spatially

clustering the pixels in the imaging domain in a hierarchical

manner, yielding a quad-tree with multiple levels. Groups

of pixels are grouped into increasingly large clusters in the

quad-tree. Pixel interactions are directly computed only at

the lowest level between adjacent clusters. Aggregated cluster

interactions are propagated to children and parents.

Cluster interactions may be near field or far field as shown in

Near-Field
Clusters

Far-Field
Clusters

Cluster GridPixel Grid

Fig. 5. Left: Pixels (thin boxes) organized in hierarchical clusters (thick
boxes). Shades of gray represent changing field intensity discretized over
pixels. Right: Thin and thick boxes represent children and parent cluster
grids at the lowest two levels of the quad-tree. Every parent cluster has four
lower-level child clusters.

Fig. 5. The computation of near-field interactions for a cluster

involves itself (darkest shade) and the eight adjacent clusters

(medium shade) at the same level. Far-field interactions occur

between non-near-field children of the parent cluster’s near-

field clusters. There are eight near-field clusters (light shade

thick boxes) for the parent cluster in Fig. 5. Based on this

clustering, MLFMA partitions the multiplication as G0x =
GNF

0 x+GFF
0 x. Here, GNF

0 and GFF
0 are non-adjacent near-

field and far-field matrices, where the former stores the near-

field interactions in the lowest-level and the latter represents

the rest of the interactions.

MLFMA computes pairwise interactions in four phases:

aggregation, translation, disaggregation, and nearfield. These

66

phases are illustrated at the bottom of Fig. 4. It is important

to note that we invoke a Fourier relationship and expand

the fields with plane waves, not with multipoles. The plane-

wave expansion provides diagonal translation operators, and

consequently low complexity. Still, we refer to the expansions

as multipole expansions and call the algorithm MLFMA for

historical reasons.

The aggregations collect the effect of outgoing fields from

children into their parent clusters. The outgoing fields from

each cluster are sampled where higher-level (larger) clusters

require more samples. Only the lowest level is sampled ex-

plicitly. Samples at higher levels are constructed from those

in lower levels by interpolating, shifting, and superposing.

The translation step propagates the aggregated outgoing

fields to its respective far-field clusters. This is performed

by translating the expansion coefficients of each cluster to its

respective far-field clusters and superposing the contributions.

As a result, each cluster contributes to (and has contributions

from) its respective 27 (6×6−9) far-field clusters. The inter-

actions among more distant clusters are translated collectively

at higher levels.

The disaggregations propagate the aggregated and translated

fields from a cluster to its children. The disaggregation step

is the Hermitian transpose of the aggregation step, and like

aggregation, higher-level samples are copied, shifted, and

anterpolated to produce the lower-level local expansions in

its children. The anterpolation operator is a low pass filter

followed by downsampling, which corresponds to the adjoint

of an interpolation operator. At the lowest level, the local

expansions are converted back to incoming fields by taking

inverse Fourier transforms.

Finally, the fields from near-field and far-field multiplica-

tions are superposed.

C. Computational and Storage Complexity

At the end of the computation described in Section III-B,

the field induced by all N pixels will have been evaluated at all

N pixels. This computation corresponds to the dense matrix-

vector multiplication G0x, but with O(N) computational and

storage complexity.

The O(N) computational complexity is determined as fol-

lows. By bounding the computation for each cluster to its 27

far-field clusters, the total work at each level is proportional

to the number of samples per cluster times the number of

clusters. At the lowest level, the work is O(N). As the level

increases, the number of clusters is divided by four. However,

the number of samples per cluster only doubles because it is

proportional to the cluster width. The work is thus divided

by two at each level. The total work across all levels will

therefore remain O(N) despite there being O(logN) levels.

As for storage complexity, the MLFMA tree levels consume

memory proportional to the number of samples per cluster

times the number of clusters, so the memory usage is similarly

O(N). The dense interaction matrix has actually O(N2)
storing complexity; for example, for imaging domains with

sizes of 102.4λ×102.4λ (1M unknowns) and 409.6λ×409.6λ

���
���

�����

���	

Fig. 6. Two-dimensional parallelization across illuminations and MLFMA
sub-trees. Each node employs a GPU for further acceleration.

Level 5 Level 6

P0

P1

P4

P5

P2

P3

P6

P7

P0

P1

P4

P5

P2

P3

P6

P7

Fig. 7. Parallelization of MLFMA sub-trees across nodes showing cluster
grids at two different levels. Translations with inter-process communication
are shaded in gray (those of process 0 are shaded in darker gray).

(16M unkowns) would require interaction matrices of sizes

16TB and 4PB, respectively, with double-precision complex

numbers. It is clear that just storing such matrices would

constitute a computational bottleneck. Using MLFMA, we

multiply G0 on-the-fly without storing it explicitly which

enables achieving O(N) storage complexity.

We also make sure that the whole inverse scattering solver

has no other step with more than O(N) computational and

storage complexity. Doing so is important to ensure the

scalability of the entire application, not just the MLFMA

multiplications.

IV. PARALLELIZATION AND OPTIMIZATION

A. Parallelization Among Nodes

The parallelization of the application among computational

nodes happens in two dimensions as shown in Fig. 6. In

the first dimension, we execute different illuminations in

parallel on different nodes. Synchronization in this dimension

takes place twice per iteration of the inverse scattering solver

as shown in Fig. 4. In the second dimension, within each

illumination, we parallelize the MLFMA tree structure among

nodes. Synchronization in this dimension takes place at each

translation and nearfield steps. To the best of our knowledge,

our solver is the first to parallelize MLFMA in both dimen-

sions simultaneously while using GPUs.

Efficient parallelization of MLFMA among nodes is

achieved by executing the clusters of different sub-trees of the

MLFMA tree structure in parallel as shown in Fig. 7. We use

Morton indexing to ensure that spatially close clusters are also

close in memory. This approach provides good data locality

67

GPU

CPU

GPU

CPU

Aggregation

Comm.

Translation Disaggregation Nearfield

Aggregation

Comm.

Translation DisaggregationNearfield

Fig. 8. Overlapping MPI communication with computation. Arrows indi-
cate dependence relationships. While the GPU is handling earlier MLFMA
operations, the CPU receives data needed for later operations.

and easy bookkeeping. It also ensures that parent/children

clusters across the levels of the tree structure are situated on

the same node.

This strategy partitions the MLFMA tree structure to up

to 16 processes since there are 16 clusters at the highest

computed level. The 16 sub-trees have independent aggre-

gation and disaggregation stages across all levels requiring

no MPI communication during these stages. The only MPI

communication happens during translation and nearfield steps.

Partitioning beyond 16 processes would require splitting ag-

gregation and disaggregation stages at higher levels which

would introduce MPI communication to these stages as well.

B. Communication Optimization

When parallelizing a single MLFMA across nodes, MPI

communication may be required for the nearfield computation

as well as the translation phase of the farfield computation

at all levels. For example, Fig. 7 shows for levels 5 and

6 all the far-field clusters involved in communication (light

and dark gray), and those involved in communication with P0

specifically (dark gray).

To minimize the number of handshakes, small communi-

cation buffers are aggregated into larger ones before com-

munication takes place. We also overlap the communication

with computation on each node as shown in Fig. 8. We take

advantage of the fact that nearfield and farfield computations

are independent to perform the communication for one asyn-

chronously in parallel with the computation of the other.

C. Parallelization Within Nodes

To parallelize an MLFMA sub-tree within nodes, we employ

OpenMP threads to process clusters in parallel for levels

with many clusters and few samples per cluster, and process

samples in parallel for levels with few clusters and many

samples per cluster. We extend this parallelization scheme to

the GPU which gives us much greater speedup. We apply

thread-coarsening, shared-memory tiling, register tiling, and

parameter tuning optimization techniques to improve perfor-

mance. The main factor that enables us to use GPUs effectively

is the memory optimizations described in Section IV-D. These

optimizations allow interaction matrix operators to fit in GPU

memory and formulate these operators as matrix-matrix mul-

tiplications which are very suitable for GPU parallelization.

TABLE I
THE KEY MLFMA OPERATORS IN MATRIX FORM

MLFMA Operator Structure # Types
Near-Field Interactions Dense 9
Multipole Expansion Dense 1
Interpolations Band-Diagonal 1
Multipole Shiftings Diagonal 4
Translations Diagonal 40
Local Shiftings Diagonal 4
Anterpolations Band-Diagonal 1
Local Expansions Dense 1

TABLE II
NCSA BLUE WATERS NODE COMPOSITION

Node XE6 (CPU) XK7 (GPU)
Socket 1 AMD Opteron 6276 AMD Opteron 6276

(8 modules) (8 modules)
Socket 2 AMD Opteron 6276 NVIDIA Tesla K20x

(8 modules) (14 SMX, 6 GB RAM)
RAM 64 GB 32 GB

D. Memory Optimization

The regular grid of pixels and clusters provides opportuni-

ties to reuse certain key MLFMA operators listed in Table I.

Matrices for these operators are generated ahead of time in

the setup stage of the imaging algorithm and stored as lookup

tables. This small additional memory cost enables a large

reduction in the overall memory demands of MLFMA.

First, the near-field matrix is sparse with O(N) elements.

However, we do not fully store this matrix. Instead, we take

advantage of the symmetry in the regular pixel grid to store

nine types of key interaction matrices and use them as needed

during near-field multiplications.

Second, the far-field matrix is dense with O(N2) elements,

but it is neither stored nor multiplied explicitly. MLFMA

multiplies it on-the-fly using the pre-computed operator ma-

trices through aggregation, translation, and disaggregation

steps as explained in Section III-B. The multipole and local

expansions are implemented as matrix-matrix multiplications,

which achieves better data reuse than matrix-vector multipli-

cations. The interpolation and anterpolation operators, which

are used for aggregation and disaggregation, respectively,

are realized with band-diagonal matrices. The band-diagonal

structure comes from local interpolations of the band-limited

expansion samples. More accuracy yields a thicker band (more

non-zero elements in the interpolation matrix). The multipole

and local shifting operators, which are used for aggregation

and disaggregation, respectively, are realized with diagonal

matrices. There are four types of these matrices at each level.

For the translation step, there are 40 unique types of translation

operators at each level which are reused as needed. Translation

operators are implemented as diagonal matrices.

V. PERFORMANCE RESULTS

A. Computational Environment

The Blue Waters Supercomputer of NCSA [19] consists

of 22,500 XE6 CPU compute nodes and 4,224 XK7 GPU-

accelerated nodes. The specifications of the XE6 and XK7

68

1,960 s
988 s

516 s

274 s
142 s

0

0.2

0.4

0.6

0.8

1

1

2

4

8

16

64 128 256 512 1024

Ef
fic

ie
nc

y

Sp
ee

du
p

Number of GPU Nodes

Speedup Efficiency

Fig. 9. Strong scaling when illuminations distributed across additional nodes.
Each MLFMA solver is employed on a single node.

1,960 s

1,025 s

588 s

368 s

263 s

0

0.2

0.4

0.6

0.8

1

1

2

4

8

16

64 128 256 512 1024

Ef
fic

ie
nc

y

Sp
ee

du
p

Number of GPU Nodes

Speedup Efficiency

Fig. 10. Strong scaling when MLFMA sub-trees are distributed across
additional nodes. Each MLFMA solver is parallelized on multiple nodes.

nodes are summarized in Table II. We will refer XE6 nodes

as CPU nodes and XK7 nodes as GPU nodes. The CPU and

GPU runs employ 16 CPU cores, and 8 CPU cores and a

GPU, respectively. The software environment is a 64-bit linux

OS. For the numerical results, we use GNU GCC 4.9.3 and

Nvidia NVCC 7.5.17 compilers, both with fast-math and O3

optimizations enabled.

B. Solver Parameters

For the numerical results, the MLFMA parameters are

chosen such that each matrix-vector multiplication has at

most 10-5 error, relative to naive direct O(N2) multiplication.

The forward solutions are terminated when the BiCGS solver

converges under 10-4 relative residual error norm. The DBIM

reconstructions perform 50 nonlinear conjugate-gradient steps.

The results use no regularization in the reconstructions except

early termination. We terminate heuristically after evaluating

the iterative behaviour based on trial and error. All computa-

tions use double-precision.

C. Strong Scaling

Since we parallelize the application across two dimensions,

illuminations and MLFMA sub-trees, we present two scaling

experiments, one in each dimension, for both strong and weak

scaling. All strong scaling tests reconstruct the same numerical

phantom placed inside a 102.4λ×102.4λ imaging domain.

The discretization of the domain yields 1M unknown pixel

properties to be solved. The smallest cluster size is chosen

to be 0.8λ×0.8λ, i.e., each lowest-level cluster involves 64

pixels, yielding a quad-tree structure with eight levels. The

0.00

0.20

0.40

0.60

0.80

1.00

0

50

100

150

200

250

64 128 256 512 1024

Ef
fic

ie
nc

y

Ti
m

e
(s

)

Number of GPU Nodes

Time
Time (adjusted to iteration variation)
Efficiency
Efficiency (adjusted to iteration variation)

Fig. 11. Weak scaling when number of illuminations are increased with the
number of nodes. Each node handles a single illumination.

0.00

0.20

0.40

0.60

0.80

1.00

0

50

100

150

200

250

64 128 256 512 1024

Ef
fic

ie
nc

y

Ti
m

e
(s

)

Number of GPU Nodes

Time
Time (adjusted to iteration variation)
Efficiency
Efficiency (adjusted to iteration variation)

Fig. 12. Weak scaling when solution domain is enlarged with the number
of nodes. Each node handles a constant amount of MLFMA sub-tree.

phantom is illuminated by 1,024 transmitters and the scattered

field is collected by 1,024 receivers.

1) Strong Scaling across Illuminations: In this analysis, the

number of GPU nodes is varied from 64 to 1,024 while the

problem size is kept the same. Each node is equipped with a

single MLFMA solver and 1,024 illuminations are distributed

equally across the nodes. The total reconstruction times are

shown in Fig. 9.

The reconstruction on 64 GPU nodes, where each node

handles 16 illuminations, takes 1,096 s (32.7 min). When

scaling to 1,024 nodes, where each node handles a single

illumination, the reconstruction takes 142 s (2.4 min). The run

with 1,024 GPU nodes is 13.8× faster than than with 64 GPU

nodes, yielding 86.1% parallelization efficiency. The efficiency

is high due to the mostly-independent handling of illumina-

tions. A notable source of inefficiency is the small difference

between the number of iterations in forward solutions, which

is averaged-out when the solutions are serialized on nodes.

2) Strong Scaling across MLFMA Sub-trees: In this analy-

sis, we take the 64-node GPU run as a baseline, and distribute

the sub-trees of MLFMA across the additional nodes while

keeping the problem to be solved the same. For example,

when 1,024 nodes are used, there are 64 forward solvers, each

parallelized on 16 GPU nodes (see Fig. 6 for depiction), where

each solver handles 16 illuminations. The total reconstruction

times are shown in Fig. 10.

The reconstruction on 1,024 GPU nodes takes 263 s

(4.4 min) which is 7.45× faster than that on 64 GPU nodes,

yielding 46.6% parallelization efficiency. The efficiency in this

case is lower than that of the previous case. One reason is the

69

degradation in GPU efficiency due to smaller chunks of work

per kernel of the MLFMA kernels. Nevertheless, the GPU

runs are still faster than the CPU runs (see Section V-E).

As a strategy for maximizing the overall parallelization

efficiency of the application, the illuminations should be par-

titioned first. If there are more nodes than illuminations, then

the MLFMA sub-trees can be partitioned to employ remaining

nodes.

D. Weak Scaling

One challenge with the weak scaling analysis for this

application is that as the problem size is scaled with the

number of processors, the number of BiCGS iterations in

forward problems changes creating a disproportional scaling

of the problem size. To account for this effect, we show both

real execution time/efficiency as well as “adjusted” execution

time/efficiency. The latter adjusts the fraction of time spent in

the forward solvers to factor out the variation in the number of

forward solver iterations. This adjustment is done by dividing

the total time spent in BiCGS by the number of BiCGS

iterations, then multiplying by the number of BiCGS iterations

performed at the smallest problem size with 64 nodes.

1) Weak Scaling across Illuminations: In this analysis, as

we increase the number of nodes, we increase the number

of illuminations proportionally such that the new nodes are

assigned to compute the new illuminations and the number

of illuminations per node is held constant. The results of this

experiment are shown in Fig. 11. Despite the 77.2% in weak

scaling efficiency when real time is considered, we note that

after adjusting for iteration variation, the efficiency is 89.9%.

This shows that part of the reduction in weak scaling efficiency

is largely due to forward solver iteration variation which is a

property of the algorithm, and not due to inefficiency in the

parallelization of the problem.

2) Weak Scaling across MLFMA Sub-trees: In this analysis,

as we increase the number of nodes, we increase the size

of the MLFMA tree structure proportionally by increasing

the size of the imaging domain, hence the number of pixels.

The new nodes are used to process the larger tree structure

such that the size of the sub-tree per node is held constant.

Note that the scaling factor in this experiment must be a

factor of four because of the square dimension of the imaging

domain. The results of this experiment are shown in Fig. 12.

The real weak scaling efficiency is 73.3% while the adjusted

is 94.7%. This result shows that, as with weak scaling of

illuminations, the degradation in efficiency is caused largely by

the forward solver iteration variation as opposed to inefficient

parallelization of the problem.

E. GPU Performance

1) MLFMA Speedup: We evaluate the benefit of GPU

acceleration for a single MLFMA multiplication on a large

409.6λ×409.6λ (16M unknowns) imaging domain. Table III

shows the speedup of individual MLFMA operations and

overall speedup. One observation is that 16 GPU nodes are

15.36× faster than 1 GPU node, while 16 CPU nodes are

TABLE III
INDIVIDUAL MLFMA OPERATIONS GPU SPEEDUPS

MLFMA Operation 1 Node 16 Nodes
CPU GPU CPU GPU

Multipole Expansion 1.0× 5.05× 16.30× 79.95×
Aggregation 1.0× 5.92× 15.42× 78.71×
Translation 1.0× 2.90× 12.86× 44.80×
Disaggregation 1.0× 2.82× 13.77× 38.22×
Local Expansion 1.0× 5.48× 15.55× 86.51×
Near-Field Interactions 1.0× 3.92× 15.75× 62.76×
Overall 1.0× 3.91× 14.54× 60.08×

TABLE IV
WHOLE APPLICATION GPU SPEEDUP

Number of Nodes 64 Nodes 256 Nodes 1,024 Nodes 4,096 Nodes
CPU Time 8,216 s 2,107 s 558 s 151 s
GPU Time 1,960 s 516 s 142 s 40.2 s
GPU Speedup 4.19× 4.08× 3.92× 3.77×

14.54× faster than 1 CPU node. This better efficiency across

GPU nodes is due to overlapping communication by the CPU

with computation by the GPU (see Section IV-B). Another

observation is that the speedup of the translation step is not

as great as that of the other steps because of the low data

reuse of the diagonal translation operations (see Table I). In

contrast, the multipole and local expansions have the highest

speedup because they are implemented as dense matrix-matrix

multiplications which are well-suited for GPUs.

2) Whole Application Speedup: We evaluate the benefit of

GPU acceleration for the whole application using the same

parameters from the strong scaling study in Section V-C.

Table IV shows the whole application speedup from using

GPU acceleration. We scale up to 1,024 nodes by paralleliz-

ing across illuminations, and from 1,024 to 4,096 nodes by

parallelizing across MLFMA sub-trees. For the largest scale

run on 4,096 GPU nodes, the reconstruction time obtained is

40.2 s (less than a minute!) which corresponds to 76.2% strong

scaling efficiency with respect to 64 GPU nodes. We do not

scale further than 4,096 nodes because Blue Waters has only

4,224 GPU nodes.

The values computed by the CPU and GPU are similar

enough so that the solver in both cases takes the same steps

and performs the same number of iterations. The final images

in the two cases have a relative difference norm of 7.15×10-13.

F. A Large Reconstruction

We solve a very large inverse-scattering problem using the

synthetic Shepp-Logan phantom [20] which represents a head

section and is a well-known benchmark geometry for imag-

ing applications. The results for a monochromatic (single-

frequency) imaging of the phantom are shown in Fig. 13.

The phantom is illuminated by 1,024 distinct transmitters

and the scattered field is collected by 2,048 receivers. The

image size is 204.8λ×204.8λ (4M pixels). The problem is

partitioned across 4,096 GPU nodes (1,024 illuminations ×
4 MLFMA sub-trees per node). After 50 DBIM iterations,

the residual error norm drops down to 2.89× 10−3. The total

solution time is 126.9 s. The total number of forward scattering

problems solved is 153,600 with a total number of 2,054,312

MLFMA multiplications (13.4 MLFMA multiplications per

forward solution on average). To the best of our knowledge,

70

204.8
+

Iteration 1

Iteration 20

Iteration 2

Iteration 50

Iteration 10

Reference
5.93x10-1 5.78x10-1 2.77x10-1

6.99x10-2 2.89x10-3

Fig. 13. Reconstruction of a large Shepp-Logan phantom with 0.02 maximum
contrast using 1,024 transmitters and 2,048 receivers. The image size is
204.8λ×204.8λ (4M unknowns). We demonstrate that the relative residual
norm (of the right-hand-side) goes from 59.3% to 0.03% after 50 iterations.
Correspondingly, the image details can be perceived very well.

this is the largest solution achieved to date in terms of object

size, number of pixels, and number of processors.

VI. MATHEMATICAL FORMULATION

This section is optional and intended for expert readers.

A. Formulation of Scattering Problems

The Helmholtz equation for inhomogeneous media can be

written as [∇2 + k2(r)]φ(r) = −q(r), where q(r) is the

known illuminating source, φ(r) is the unknown field, and

k(r) represents the inhomogeneous complex medium. The

Helmholtz equation can be reorganized as

[∇2 + k20(r)]φ(r) = −q(r)−O(r)φ(r), (1)

where O(r) = k20Δεr(r), k0 is the background medium, and

Δεr(r) is the dielectric permittivity contrast to the background

medium. Invoking the free space Green’s function satisfying

[∇2 + k20]g0(r, r
′) = −δ(r − r′), we can convert the differ-

ential equation in (1) into an integral equation:

φ(r) =

∫
V

dr′g0(r, r′)q(r′) +
∫
V

dr′g0(r, r′)O(r′)φ(r′)

(2)
where the first term in the right hand side corresponds to the

incident field and the second term corresponds to the scattered

field in the imaging domain V (see Fig. 3).

With discretization, we can write (2) in matrix form

φ = GTq +G0Oφ, where G0 and GT are N×N and N×T
dense matrices, respectively, representing the corresponding

free space Green’s operator. The incident field on the pixels

is defined as φinc = GTs. The object matrix O = diag{O}
is diagonal. With a known object, the unknown field can be

solved with a matrix inversion

φ = [I −G0O]−1φinc. (3)

This corresponds to solving a forward problem, where the

field satisfying (1) is solved with the known object. Then the

scattered field at the transmitters can be found by a R × N
Green’s operator GR defined such that φsca = GROφ.

For the discretization of (2), we choose the basis and

testing (or weighting) functions to be unity on the correspond-

ing pixels, within a Galerkin scheme, and zero elsewhere.

The transmitters and receivers are modeled with Dirac delta

functions for simplicity. Since each matrix element of G0

represents the interaction between a basis and testing function

pair, the matrix is called the interaction matrix. The matrix

elements of the Green’s operators can be written explicitly as:

G0m,n =

∫
Vm

dr′
∫
Vn

dr g0(r
′, r)

GRr,n =

∫
Vn

dr g0(rr, r)

GT m,t =

∫
Vm

dr′g0(r′, rt)

(4)

where Vm and Vn are the domains of the mth and nth pixels,

and rr and rt are the locations of the rth receiver and tth

transmitter, respectively. Furhermore, the diagonal operators

have elements On = k20Δεr(rn) and In = V 2
n , where rn is

the center of the nth pixel. In two dimensions, the free space

Green’s function is g0(r, r
′) = i/4H

(1)
0 (k|r − r′|), and an

analytical singularity extraction is invoked appropriately for

accurate evaluations in (4) with numerical integrations.

B. Iterative Optimization for Inverse Scattering Solutions

The inverse problem minimizes the cost function in the form

of Φ(O) = ‖φsca(O) − φm‖2, where φsca and φm are the

scattered and measured fields at the receivers, respectively.

It is clear that the scattered field is a nonlinear function of

the object because φsca = GRO[I −G0O]−1φinc. There-

fore we use a gradient-search algorithm to perform this N -

dimensional nonlinear optimization. For deriving the gradient

(an N -dimensional complex vector) of the cost function, we

perturb the object at Ob as O = Ob + δO and approximate

Φ(Ob + δO) ≈ ‖φsca(Ob) + F δO − φm‖2, where F repre-

sents the functional derivative operator. This approximation is

second-order accurate. In this case, it is easy to show that

the gradient is ∇Φ = FHb, where b = φsca(Ob) − φm is

the residual field at the receivers and H stands for Hermitian

transpose. We the exact F semi-analytically with the distorted

Born approximation, yielding a forward scattering problem.

The derivative operator F is updated with the background

object in each iteration. For avoiding line search, we analyti-

cally fit a quadratic curve to the cost function (in the direction

of the negative gradient), of which we take the step at its

bottom. With a little math, this step can be shown as

O = Ob −∇Φ
‖∇Φ‖2
‖F∇Φ‖2 . (5)

This step can be implemented with two forward solutions: one

for finding the gradient, and one for taking the step. Evaluating

the new residual requires an additional solution, yielding three

forward solutions per iteration.

71

The steepest-descent iterations with (5) are naive. To im-

prove convergence, we take steps in conjugate-gradient di-

rections (with a trivial modification). We prefer nonlinear

conjugate-gradient iterations because they take fewer total

matrix-vector multiplications than Newton-type optimization.

C. Finding Derivative with Distorted-Born Approximation

To find the derivative operator F , we define a Hilbert

space scattering operator G, which solves a scattering problem

involving an object O and a source q such that φ = Gq.

Then a scattering equation can be written as G = G0 + G0OG,

consistent with (2), where G0 is the free space Green’s

operator. Under an object perturbation O = Ob + δO, the vari-

ational equation can be written as δG = GbδOGb + GbδOδG,

where its first-order term is δG(1) = GbδOGb. Here, Gb solves

the scattering problem involving the background object Ob.

When the operators operate on a source, the field variation

is δφ ≈ δφ(1) = GbδObφb. Since δO is diagonal, we can

rearrange and write δφ(1) = GbφbδO = FδO, where F is the

functional derivative (Fréchet) operator. The discretization of

this yields δφ(1) = F δO, where

F = GR{I +Ob[I −G0Ob]
−1}φb. (6)

Multiplications with F are costly because of the involved

inversions.

VII. RELATED WORK

There have been many works implementing DBIM-based

inverse scattering solvers for multiple-scattering reconstruc-

tion [1], [2], [3], [4], [5], [6], [7], [8], [21], [22]. These works

suffer from high computational complexity which limits their

scalability. Our work uses MLFMA for reduced complexity.

Reduced-complexity solutions for DBIM-based inverse

solvers for multiple-scattering include CG-FFT [23] and

BCGS-FFT [24]. FFT-based solvers have O(N logN) com-

plexity. Our work uses MLFMA which has O(N) complexity.

Hesford and Chew [15] also use MLFMA to implement

a reduced complexity DBIM-based inverse scattering solver.

Their work is demonstrated on 3-D problems while our work

is demonstrated on 2-D problems. However, their approach

has limited scalability compared to ours. It performs shared-

memory parallelization across CPU cores within a single node

while our approach performs MPI parallelization across many

nodes, leverages MLFMA sub-tree parallelism for additional

scaling to more nodes, and uses GPUs for acceleration within

nodes, scaling to 4,096 GPU nodes. The largest full problem

they solve is 12.8λ×12.8λ×12.8λ (256k unknowns) with

72 illuminations while our approach solves 204.8λ×204.8λ
(4M unkowns) with 1,024 illuminations. They show scaling

results for 2M unknowns without solving the full problem,

but these results are obtained using just 2 illuminations and

by overdiscretizing a 4λ×4λ×4λ imaging domain. Note that

scaling the number of unknowns by overdiscretizing a small

imaging domain only increases work and storage at the lowest

level of the MLFMA tree, whereas scaling by enlarging the

imaging domain as we do increases work and storage across

the entire tree. Although both approaches have the same

computational and storage complexity, overdiscretization has

a much smaller constant.

Many works use MLFMA to reduce complexity of forward

solvers [25], [26], [27], [28], [29], [30]. One work parallelizes

the problem on a single GPU [28]. We use many GPUs to

parallelize our forward solver and deploy it in a full-fledged

inverse solver that performs thousands of forward solutions.

MLFMA has also been used to reduce the complexity

of solvers for Helmholtz-type surface problems. There have

been many forward solvers proposed [31], [32], [33], [34],

[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],

[28], [46], [47], [48]. A full MLFMA-based inverse solver

for surface problems has been proposed by Etminan and

Gürel [49]. These solvers have applied various algorithmic

optimizations such as exploiting symmetries to save memory

and setup time [31], buffering to tune the MLFMA tree struc-

ture [32], low-frequency formulations to prevent the MLFMA-

breakdown phenomenon [33], [34], and adoption/improvement

of numerical interpolation and integration [35], [36]. Paral-

lelization of MLFMA-based forward solvers for surface prob-

lems have included MPI-based partitioning of clusters [31],

hybrid partitioning of clusters in lower levels and field samples

in higher levels [37], partitioning both clusters and samples in

middle levels [38], [39], OpenMP parallelization to prevent

data duplication via shared memory [40], [41], single GPU

parallelization [28], [46], multi-GPU single-node paralleliza-

tion [47], and multi-GPU multi-node parallelization [48]. We

reuse some of these algorithmic optimizations and paralleliza-

tion strategies while applying MLFMA to a different problem,

namely volume problems.

MLFMA has also been used to reduce the complexity of

non-Helmholtz problems [50], [51], [52]. Our solver targets

Helmholtz-type volume problems.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present the implementation of the first

scalable inverse scattering solver for imaging that is fully

enhanced with MLFMA, to the best of our knowledge. Em-

ploying MLFMA enables us to reduce the complexity of the

solver in order to capture multiple-scattering effects producing

higher quality images as well as to scale to large problems.

Our solver achieves the largest full-wave tomographic im-

age reconstructed to date, which involves an image size of

204.8λ×204.8λ (4M unknowns), scaled to 4,096 GPU nodes.

Our next steps are to extend this technique to solve three-

dimensional imaging domains for which scalability is ever

more important for reconstructing meaningfully sized objects.

We also plan to apply resonance-free integral formulations and

preconditioning of the system to address situations where the

problem goes into resonance and near-resonance frequencies

which is more likely to happen when problem size is larger.

ACKNOWLEDGMENT

This work was supported by NSF grants OAC-0725070 and

EECS-1609195.

72

REFERENCES

[1] W. C. Chew and Y.-M. Wang, “Reconstruction of two-dimensional
permittivity distribution using the distorted Born iterative method,” IEEE
Transactions on Medical Imaging, vol. 9, no. 2, pp. 218–225, 1990.

[2] T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering
of two-dimensional dielectric objects buried in a lossy earth using the
distorted Born iterative method,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 39, no. 2, pp. 339–346, 2001.

[3] F. Li, Q. H. Liu, and L.-P. Song, “Three-dimensional reconstruction of
objects buried in layered media using Born and distorted Born iterative
methods,” IEEE Geoscience and Remote Sensing Letters, vol. 1, no. 2,
pp. 107–111, 2004.

[4] R. Lavarello and M. Oelze, “A study on the reconstruction of moder-
ate contrast targets using the distorted Born iterative method,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 55, no. 1, pp. 112–124, 2008.

[5] R. J. Lavarello and M. L. Oelze, “Tomographic reconstruction of three-
dimensional volumes using the distorted Born iterative method,” IEEE
Transactions on Medical Imaging, vol. 28, no. 10, pp. 1643–1653, 2009.

[6] R. Lavarello and M. Oelze, “Density imaging using a multiple-frequency
DBIM approach,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 57, no. 11, pp. 2471–2479, 2010.

[7] W. H. Weedon, J. E. Mast, W. C. Chew, H. Lee, and J. P. Murtha,
“Inversion of real transient radar data using the distorted-Born iter-
ative algorithm,” in Antennas and Propagation Society International
Symposium, pp. 217–220, 1992.

[8] J. Lin, C. Lu, Y. Wang, W. Chew, J. Mallorqui, A. Broquetas, C. Pichot,
and J.-C. Bolomey, “Processing microwave experimental data with
the distorted born iterative method of nonlinear inverse scattering,”
in Antennas and Propagation Society International Symposium, 1993.
AP-S. Digest, pp. 500–503, IEEE, 1993.

[9] J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algo-
rithm for electromagnetic scattering by large complex objects,” IEEE
Transactions on Antennas and Propagation, vol. 45, no. 10, pp. 1488–
1493, 1997.

[10] J. Song, C. Lu, W. C. Chew, and S. Lee, “Fast illinois solver code
(FISC),” IEEE Antennas and Propagation Magazine, vol. 40, no. 3,
pp. 27–34, 1998.

[11] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light. Elsevier, 1980.

[12] M. Hidayetoglu, W.-M. Hwu, and W. C. Chew, “Seeing the invisible:
Limited-view imaging with multiple-scattering reconstruction,” URSI
National Radio Science Meeting (USNC-URSI NRSM), Jan. 2018.

[13] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
vol. 43. SIAM, 1994.

[14] V. Rokhlin, “Diagonal forms of translation operators for the Helmholtz
equation in three dimensions,” Applied and Computational Harmonic
Analysis, vol. 1, no. 1, pp. 82–93, 1993.

[15] A. J. Hesford and W. C. Chew, “Fast inverse scattering solutions using
the distorted Born iterative method and the multilevel fast multipole
algorithm,” The Journal of the Acoustical Society of America, vol. 128,
no. 2, pp. 679–690, 2010.

[16] M. Hidayetoğlu, C. Pearson, L. Gürel, W.-m. Hwu, and W. C. Chew,
“Scalable parallel DBIM solutions of inverse-scattering problems,” in
Computing and Electromagnetics International Workshop (CEM), 2017,
pp. 65–66, IEEE, 2017.

[17] M. Hidayetoğlu, C. Pearson, I. El Hajj, W. C. Chew, L. Gürel, and
W.-m. Hwu, “Scaling analysis of a hierarchical parallelization of large
inverse multiple-scattering solutions,” SC17: International Conference
for High Performance Computing, Networking, Storage and Analysis
(poster), 2017.

[18] M. Hidayetoğlu, C. Pearson, W. C. Chew, L. Gürel, and W.-M.
Hwu, “Large inverse-scattering solutions with DBIM on GPU-enabled
supercomputers,” in Applied Computational Electromagnetics Society
Symposium-Italy (ACES), 2017 International, pp. 1–2, IEEE, 2017.

[19] NCSA, “Blue Waters user portal — user guide,” 2012.

[20] L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head
section,” IEEE Transactions Nuclear Science, vol. 21, pp. 21–43, 1974.

[21] F. Gao, B. D. Van Veen, and S. C. Hagness, “Sensitivity of the
distorted Born iterative method to the initial guess in microwave breast

imaging,” IEEE Transactions on Antennas and Propagation, vol. 63,
no. 8, pp. 3540–3547, 2015.

[22] D. W. Winters, B. D. Van Veen, and S. C. Hagness, “A sparsity regu-
larization approach to the electromagnetic inverse scattering problem,”
IEEE transactions on antennas and propagation, vol. 58, no. 1, pp. 145–
154, 2010.

[23] A. J. Hesford and W. C. Chew, “A frequency-domain formulation of
the Fréchet derivative to exploit the inherent parallelism of the distorted
Born iterative method,” Waves in Random and Complex Media, vol. 16,
pp. 495–508, 2006.

[24] C. Yu, M. Yuan, and Q. H. Liu, “Reconstruction of 3D objects from
multi-frequency experimental data with a fast DBIM-BCGS method,”
Inverse Problems, vol. 25, no. 2, p. 024007, 2009.

[25] C.-C. Lu, “A fast algorithm based on volume integral equation for
analysis of arbitrarily shaped dielectric radomes,” IEEE transactions on
antennas and propagation, vol. 51, no. 3, pp. 606–612, 2003.

[26] K. Sertel and J. L. Volakis, “Multilevel fast multipole method solution of
volume integral equations using parametric geometry modeling,” IEEE
Transactions on Antennas and Propagation, vol. 52, no. 7, pp. 1686–
1692, 2004.

[27] H. WallEN, S. Järvenpää, and P. Ylä-Oijala, “Broadband multilevel
fast multipole algorithm for acoustic scattering problems,” Journal of
Computational Acoustics, vol. 14, no. 04, pp. 507–526, 2006.

[28] M. Cwikla, J. Aronsson, and V. Okhmatovski, “Low-frequency mlfma on
graphics processors,” IEEE Antennas and Wireless Propagation Letters,
vol. 9, pp. 8–11, 2010.

[29] S. Järvenpää, J. Markkanen, and P. Ylä-Oijala, “Broadband multilevel
fast multipole algorithm for electric-magnetic current volume integral
equation,” IEEE Transactions on Antennas and Propagation, vol. 61,
no. 8, pp. 4393–4397, 2013.

[30] B. Engquist and L. Ying, “Fast directional multilevel algorithms for
oscillatory kernels,” SIAM Journal on Scientific Computing, vol. 29,
no. 4, pp. 1710–1737, 2007.

[31] S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is
it that big?,” IEEE Antennas and Propagation Magazine, vol. 45, no. 2,
pp. 43–58, 2003.

[32] S. Ohnuki and W. C. Chew, “Numerical accuracy of multipole expansion
for 2D mlfma,” IEEE Transactions on Antennas and Propagation,
vol. 51, no. 8, pp. 1883–1890, 2003.

[33] H. Wallen and J. Sarvas, “Translation procedures for broadband mlfma,”
Progress in Electromagnetics Research, vol. 55, pp. 47–78, 2005.

[34] I. Bogaert, J. Peeters, and F. Olyslager, “A nondirective plane wave
MLFMA stable at low frequencies,” IEEE Transactions on Antennas
and Propagation, vol. 56, no. 12, pp. 3752–3767, 2008.

[35] F. P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Chris-
tiansen, and E. Michielssen, “A multiplicative Calderon preconditioner
for the electric field integral equation,” IEEE Transactions on Antennas
and Propagation, vol. 56, no. 8, pp. 2398–2412, 2008.

[36] L. Gurel and O. Ergul, “Singularity of the magnetic-field integral
equation and its extraction,” IEEE Antennas and Wireless Propagation
Letters, vol. 4, no. 1, pp. 229–232, 2005.

[37] S. Velamparambil and W. C. Chew, “Analysis and performance of a dis-
tributed memory multilevel fast multipole algorithm,” IEEE Transactions
on Antennas and Propagation, vol. 53, no. 8, pp. 2719–2727, 2005.

[38] O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an
efficient parallelization of the multilevel fast multipole algorithm,” IEEE
Transactions on Antennas and Propagation, vol. 57, no. 6, pp. 1740–
1750, 2009.

[39] L. Gurel and O. Ergul, “Hierarchical parallelization of the multilevel
fast multipole algorithm (MLFMA),” Proceedings of the IEEE, vol. 101,
no. 2, pp. 332–341, 2013.

[40] X.-M. Pan, W.-C. Pi, M.-L. Yang, Z. Peng, and X.-Q. Sheng, “Solving
problems with over one billion unknowns by the MLFMA,” IEEE
Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2571–
2574, 2012.

[41] M. Hidayetoglu and L. Gurel, “An MPIxOpenMP implementation
of the hierarchical parallelization of MLFMA,” in Computational
Electromagnetics International Workshop (CEM), 2015, IEEE, 2015.

[42] B. Michiels, J. Fostier, I. Bogaert, and D. De Zutter, “Full-wave simula-
tions of electromagnetic scattering problems with billions of unknowns,”
IEEE Transactions on Antennas and Propagation, vol. 63, no. 2, pp. 796–
799, 2015.

[43] L. Gurel, O. Ergul, A. Unal, and T. Malas, “Fast and accurate analysis
of large metamaterial structures using the multilevel fast multipole

73

algorithm,” Progress in Electromagnetics Research, vol. 95, pp. 179–
198, 2009.

[44] B. MacKie-Mason, A. Greenwood, and Z. Peng, “Adaptive and parallel
surface integral equation solvers for very large-scale electromagnetic
modeling and simulation,” Progress in Electromagnetics Research,
vol. 154, pp. 143–162, 2015.

[45] M. Hidayetoglu and L. Gurel, “Parallel out-of-core MLFMA
on distributed-memory computer architectures,” in Computational
Electromagnetics International Workshop (CEM), 2015, IEEE, 2015.

[46] K. Xu, D. Z. Ding, Z. H. Fan, and R. S. Chen, “Multilevel fast multipole
algorithm enhanced by GPU parallel technique for electromagnetic scat-
tering problems,” Microwave and Optical Technology Letters, vol. 52,
no. 3, pp. 502–507, 2010.

[47] J. Guan, S. Yan, and J.-M. Jin, “An OpenMP-CUDA implementation
of multilevel fast multipole algorithm for electromagnetic simulation on
multi-GPU computing systems,” IEEE Transactions on Antennas and
Propagation, vol. 61, no. 7, pp. 3607–3616, 2013.

[48] V. Dang, Q. M. Nguyen, and O. Kilic, “GPU cluster implementation of
fmm-fft for large-scale electromagnetic problems,” IEEE Antennas and
Wireless Propagation Letters, vol. 13, pp. 1259–1262, 2014.

[49] A. Etminan and L. Gürel, “Shape reconstruction of three-dimensional
conducting objects via near-field measurements,” in Antennas and
Propagation Society International Symposium (APSURSI), 2014 IEEE,
pp. 153–154, IEEE, 2014.

[50] N. A. Gumerov and R. Duraiswami, “Fast multipole methods on
graphics processors,” Journal of Computational Physics, vol. 227, no. 18,
pp. 8290–8313, 2008.

[51] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and
M. Taiji, “42 TFLOPS hierarchical N-body simulations on GPUs with
applications in both astrophysics and turbulence,” in High Performance
Computing Networking, Storage and Analysis, pp. 1–12, IEEE, 2009.

[52] R. Yokota, L. A. Barba, T. Narumi, and K. Yasuoka, “Petascale turbu-
lence simulation using a highly parallel fast multipole method on GPUs,”
Computer Physics Communications, vol. 184, no. 3, pp. 445–455, 2013.

74

