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Abstract—In this paper, we present an update to our previous
submission from Graph Challenge 2017. This work describes
and evaluates new software algorithm optimizations undertaken
for our 2018 year submission on Collaborative CPU+GPU Algo-
rithms for Triangle Counting and Truss Decomposition. First, we
describe four major optimizations for the triangle counting which
improved performance by up to 117x over our prior submission.
Additionally, we show that our triangle-counting algorithm is
on average 151.7x faster than NVIDIA’s NVGraph library (max
476x) for SNAP datasets. Second, we propose a novel parallel
k-truss decomposition algorithm that is time-efficient and is up
to 13.9x faster than our previous submission. Third, we evaluate
the effect of generational hardware improvements between the
IBM “Minsky” (POWER8, P100, NVLink 1.0) and “Newell”
(POWER9, V100, NVLink 2.0) platforms. Lastly, the software
optimizations presented in this work and the hardware improve-
ments in the Newell platform enable analytics and discovery on
large graphs with millions of nodes and billions of edges in less
than a minute. In sum, the new algorithmic implementations are
significantly faster and can handle much larger “big” graphs.

Index Terms—GPU, CUDA, collaborative graph algorithms,
triangle counting, truss decomposition

I. INTRODUCTION

Triangles and k-trusses are the basic substructures in a
graph, which convey information about its cohesiveness. A
triangle is defined as a cycle of length three, while a k-truss
is defined as a subgraph in which every edge belongs to at
least k− 2 triangles. Triangles and trusses can be enumerated
in polynomial time, however sequential algorithms can be
unacceptably slow, especially for graphs with billions of nodes
and edges. The goal of the Static Graph Challenge [1] is to
address this issue by motivating researchers to develop energy-
and time-efficient algorithms for the state-of-the-art parallel
and high performance systems to handle “big” graphs.

In our prior Graph Challenge submission [2] we presented
collaborative CPU+GPU algorithms for triangle counting and
truss decomposition using the IBM Minsky architecture. We
showcased how a developer can exploit the “zero-copy”
and “unified” memory in a simplified memory management
scheme, to simultaneously work with both CPU and GPU
threads. In the current paper, we build on our previous work
and make the following specific contributions:

1) We present optimized versions of triangle counting and k-
truss decomposition algorithms, and discuss their performance

trade-offs on various memory management schemes. Our
optimized versions are upto 117x and 13.9x faster than prior
triangle counting and k-truss decomposition algorithms.

2) We show that our optimized single GPU triangle count-
ing algorithm is on average 151.7x (max 476x) faster than
Nvidia’s NVGraph library [3], for graphs that fit in the GPU
memory. Additionally, for large synthetic graphs, our worst
case performance matches the NVGraph library.

3) We evaluate the performance of our triangle counting and
truss decomposition implementations on the next generation
hardware – the high-bandwidth IBM Newell system, which
contains two IBM POWER9 CPUs and four Nvidia V100
GPUs, connected by the NVLink 2.0 interconnect. This is in
comparison to our previous results on IBM Minsky, which
contains two IBM POWER8 CPUs and four Nvidia P100
GPUs, connected by the NVLink 1.0 interconnect.

4) We demonstrate that, on the Newell system, the collabo-
rative algorithm can count triangles for the “Friendster” graph
(119M nodes, 1.72G edges) within a minute.

The remainder of the paper is organized as follows. Sections
II and III describe the optimized parallel algorithms for trian-
gle counting and truss decomposition. Section IV describes
the experimental setup and presents the performance of our
optimized algorithms against prior submission on Minsky
platform and NVGraph library. Finally, Section V concludes
the paper with a summary and future directions.

II. OPTIMIZED TRIANGLE COUNTING ALGORITHM

Triangle counting algorithm counts the total number of
triangles in a graph. This can be achieved by first converting
an undirected graph to a directed one, counting triangles for
each edge, and then adding them together to get the total
triangle count. For an edge, triangle count can be obtained
by counting the number of common nodes in the adjacency
lists of its head and tail nodes, with the help of a simple two-
pointer intersection algorithm. Use of directed edges reduces
the triangle counting effort by half. The edges can be ordered
lexicographically or by their degrees [4].

In [2], we presented a parallel triangle counting algorithm
whose central idea was to count triangles for each edge in
parallel. Here, we present an optimized version of our prior
implementation that provides orders of magnitude performance



benefit. Algorithm 1 depicts our improved implementation for
the parallel triangle counting algorithm, which differs from
our prior implementation in the following aspects:

1) We removed the degree-based preprocessing step of
Algorithm: Forward [4] that is used for converting undi-
rected graph into a directed one. We observed that the
preprocessing overhead actually outweighs its benefits.
The new implementation uses lexicographic ordering,
which only requires us to read forward edges e = (u, v),
with u < v, for constructing the CSR structures. This
significantly cuts down the preprocessing time, with
minimal impact on the triangle counting kernel.

2) In our previous CSR structure, we stored edges as 64-bit
integers, such that the lower 32 bits correspond to the
head node and upper 32 bits correspond to the tail node.
In the new implementation, the head and tail nodes are
separated into two 32-bit integer arrays Zs and Zd, such
that for an edge e = (u, v), Zs[e] = u and Zd[e] = v.
Both these arrays are of size m, the number of edges in
the graph.

3) In addition to the edge arrays, we also have an array
P which is the pointer array. This array is of size n +
1, where n is the number of nodes in the graph. The
element in the array P [u] holds the index in the array
Zd of the first edge connected to node u. The size of
the adjacency list for the node u can be measured with
the expression P [u + 1]− P [u].

4) During execution, each edge is assigned to one thread,
which counts the triangles for that edge using an opti-
mized two-pointer intersection algorithm (Algorithm 1).
The thread assigned to an edge e only needs to traverse
the 32-bit array Zd to find common nodes, as opposed
to traversing the 64-bit array in our previous imple-
mentation. We also eliminated some redundant memory
accesses when only one of the pointers was moved
forward. Both these intuitive optimizations proved to be
extremely effective and provided a significant perfor-
mance improvement over the previous implementation
(see Section IV).

III. PARALLEL TRUSS DECOMPOSITION

The goal of k-truss decomposition is to remove all edges
that are not part of at least k−2 triangles. In our prior submis-
sion [2], if any of the edges are removed due to insufficient
triangles, the algorithm only recounts the triangles for the
edges that are affected by the removal before incrementing
the k-value. For graphs with a large number of trusses, this
is more efficient than recounting triangles for all the edges
in each iteration of higher k-values. Here, we describe an
improved implementation that provides orders of magnitude
in performance over [2].

Algorithm 3 depicts our novel implementation for the effi-
cient truss decomposition algorithm. The new implementation
differs from the previous one in the following aspects:

1) The main difference is the way in which edge deletions
are handled. Previously, the edges marked for deletion

Algorithm 1 Optimized Two-pointer intersection
Input: Zs,Zd, P, e = (u, v), u ∈ Zs, v ∈ Zd
Output: ∆(e)

1: ∆(e)← 0
2: u ptr ← P [u]; v ptr ← P [v]
3: u end← P [u + 1]; v end← P [v + 1]
4: w1 ← Zd[u ptr]; w2 ← Zd[v ptr]
5: while (u ptr < u end) ∧ (v ptr < v end) do
6: if w1 < w2 then w1 ← Zd[+ + u ptr];
7: if w1 > w2 then w2 ← Zd[+ + v ptr];
8: if w1 = w2 then
9: w1 ← Zd[+ + u ptr];

10: w2 ← Zd[+ + v ptr]
11: ∆(e)← ∆(e) + 1
12: end if
13: end while

due to insufficient triangles, were removed from the
edge array, immediately after the affected edges were
identified in every iteration of the inner loop. Since edge
removal is done using stream compaction, this caused a
significant slowdown. In the new implementation, we
use the following two operations for edge deletion:

a) Short update: In this operation, the edge e =
(u, v) to be deleted is marked with a sentinel value
u = Zs[e] = −1 and v = Zd[e] = −1 in the
edge array and everything else, including the row
pointer array, is left unmodified. This operation
is performed within the while loop (Lines 7–33
in Algorithm 3), after the edges are marked for
deletion.

b) Long update: In this operation, we remove the
“deleted” edges (with -1 for head and tail ver-
tices), and update the edge array E = (Zs,Zd)
using stream compaction. The row pointer array
is also updated so that it is consistent with the
new edge array. This operation is performed only
one time for each k value, after all the triangle
counting/edge deletion iterations are finished (Line
34). The updated edge arrays represent the “clean”
k-truss graph, which also serves as an input for
(k + 1)th iteration. In other words, long update is
a cleanup step after multiple short updates.

2) The triangle-counting function is modified to handle
sentinel values in the edge arrays after the “short up-
date” operation. This function still uses the standard
two-pointer intersection algorithm, with an additional
condition that if any of the pointers encounter a sen-
tinel value (-1) then that pointer is simply incremented.
The if statements in the modified triangle count-
ing/enumeration algorithm are depicted in Algorithm 2.

3) We create and maintain an array Ir, with length equal
to the number of edges. In the location Ir[e], we use
binary search to gather the pointer to the reverse edge



e′ = (v, u) (Lines 3–6). The array Ir is populated once
for each k value, to account for possible adjacency list
updates in the previous iteration. This array is instrumen-
tal in identifying the forward and reverse indices of the
newly affected edges (Lines 20–25). In our previous im-
plementation, the indices of the newly affected forward
and reverse edges were identified using binary search,
which increased communication and caused slowdown.
The new array Ir provides a quick look up of the reverse
edges and allows us to dramatically reduce the frequency
of binary search in our new implementation.

4) Within the inner loop, we create an array of affected
edges Eaff using stream compaction (Line 8). This array
contains the edges that were affected due to potential
deletions in the previous iteration, and it serves as
the input to the next iteration of the while loop. For
the very first iteration, all of the edges are marked as
“affected.” Additionally, to reduce the triangle count-
ing/enumeration effort by half, we only keep the for-
ward edges (with u < v) in the affected edge array,
and remove the reverse edges (with u > v). Note
that Eaff is merely a working copy of the edge array.
The actual edge array E = (Zs,Zd) contains both
forward and reverse edges, which is a necessity for
counting/enumerating triangles for truss decomposition.

5) If an edge e = (u, v) ∈ Eaff has triangle count < k− 2,
then its corresponding forward and reverse edges (from
array E) need to be marked for deletion (Line 11-27). In
our previous implementation, the indices of forward and
reverse edges were identified using binary search, which
increased communication and resulted in a slowdown.
In the new implementation, we create and maintain two
additional arrays: Forward edge indices I′f and reverse
edge indices I′r, whose lengths are equal to that of Eaff.
For each edge e = (u, v) ∈ Eaff, in the location I′f [e]
stores the pointer to the same edge e ∈ E and I′r[e]
stores the pointer to the reverse edge e′ = (v, u) ∈ E.
These arrays can be populated during the creation of
Eaff (Line 8).

Algorithm 2 Triangle counting/enumeration for k-truss
1: if (w1 = −1) ∨ (w1 < w2) then w1 ← Zd[+ + u ptr];
2: if (w2 = −1) ∨ (w1 > w2) then w2 ← Zd[+ + v ptr];
3: if (w1 6= −1) ∧ (w2 6= −1) ∧ (w1 = w2) then
4: ∆(e)← ∆(e) + 1; and/or . Triangle counting
5: W ←W ∪ {w1}; . Triangle enumeration
6: w1 ← Zd[+ + u ptr]; w2 ← Zd[+ + v ptr];
7: end if

IV. COMPUTATIONAL EXPERIMENTS

The Graph Challenge [1] organizers provide python ref-
erence implementations for triangle-counting and k-truss de-
composition. The results presented in this work produce the
same outputs as the provided reference implementations. We
used preprocessed data sets provided by the organizers in

Algorithm 3 Efficient truss decomposition
Input: G = (V,E)
Output: k-truss for 3 ≤ k ≤ kmax

1: k ← 3
2: Mark all e ∈ E as “affected”
3: for each e = (u, v) ∈ E do . Parallel for
4: Binary search e′ = (v, u) ∈ E
5: Ir[e]← e′

6: end for
7: while true do
8: (Eaff, I′f , I′r)← StmCmp(E, “affected and u < v”)
9: if Eaff = ∅ then goto 34;

10: Mark all e ∈ E as “not affected”
11: for each e = (u, v) ∈ Eaff do . Parallel for
12: ∆(e)← |adj(u) ∩ adj(v)| . Algorithm 2
13: if ∆(e) < k − 2 then
14: Stage 1:
15: Lookup e′ = (u, v)← I′f [e]
16: Lookup e′′ = (v, u)← I′r[e]
17: Mark e′ and e′′ in E as “delete”
18: Stage 2:
19: W ← adj(u) ∩ adj(v) . Algorithm 2
20: if W 6= ∅ then
21: e1 ← (u,w); e2 ← (v, w); s.t. w ∈W
22: Lookup e′1 = (w, u)← Ir[e1]
23: Lookup e′2 = (w, v)← Ir[e2]
24: Mark e1, e2, e

′
1, e

′
2 as “affected”

25: end if
26: end if
27: end for
28: for each e = (u, v) ∈ E do . Parallel for
29: if e labeled “delete” then
30: u← −1; v ← −1 . Short update
31: end if
32: end for
33: end while
34: E ← StmCmp(E, “not deleted”) . Long update
35: Output E as k-truss edge list
36: if E 6= ∅ then k ← k + 1 and goto 2

our experiments. Some of the datasets used in this work
were chosen to facilitate direct comparison with previous
Graph Challenge winning submissions. For brevity, we avoid
reporting numbers for similar graphs from same community.

The performance of triangle-counting and k-truss decompo-
sition is evaluated on two hardware platforms, the IBM Minsky
and Newell using our collaborative scheme proposed in [2].
First, we shall provide details about our evaluation hardware
and then discuss various graph performance results. And then,
we briefly introduce terminologies of collaborative schemes.

A. Minsky and Newell Evaluation Hardware

The IBM “Minsky”[5] and “Newell”[6] machines share
a common architectural topology. Table I summarizes the
components and interconnects that make up the systems. The



TABLE I
IBM MINSKY AND NEWELL ARCHITECTURE COMPARISON.

Minsky Newell
CPU POWER8 POWER9
System RAM 512 GB (230GB/s) 512 GB (240 FB/s)
GPU NVidia P100 [7] NVidia V100 [8]
CPU-CPU Interconnect 38.4 GB/s X-bus 64 GB/s X-bus
NVLink Triad Interconnect V1.0 x2 (80 GB/s) V2.0 x3 (150 GB/s)

systems comprise two triads, CPU0-GPU0-GPU1 and CPU1-
GPU2-GPU3. Components within a triads are connected by
the listed “triad interconnect,” and the CPUs in each triad
are connected by the “CPU-CPU interconnect.” The Newell
system features substantially improved interconnect bandwidth
in addition to generational improvements in CPU and GPU
performance. Minsky’s triad interconnect is NVLink 1.0 x2,
which couples each component with two 20GB/s unidirec-
tional lanes, for a total bi-directional bandwidth of 80GB/s. In
Newell, this interconnect is improved to NVLink 2.0 x3, which
features three 25GB/s lanes for an aggregate bidirectional
bandwidth of 150 GB/s.

B. Collaborative Algorithm

We enable collaborative (CPU+GPU) memory management
schemes for both k-truss decomposition and the triangle count-
ing algorithms. Similar to our prior submission, we support
three memory management schemes, namely, Single GPU
Memory, ZeroCopy Memory and Unified Memory,
where all the adjacency matrix resides in the GPU memory, in
the host pageable memory and in the system coherent domain
respectively. Collaborative execution on graphs are performed
with ZeroCopy memory and Unified memory where
we use all 160 CPU threads and 4 GPUs such that 90% of
work was done by GPUs and 10% by CPU.

C. Evaluation Methodology

For consistency with Graph Challenge evaluation metrics,
we measured total number of edges, nodes, execution time and
edges (bidirectional) per second as metric in our evaluation.
We measured the execution time after the edges are read into
the host memory, therefore it includes any preprocessing time
and not the I/O reading time. Our code is compiled with nvcc
9.2.88 and gcc 4.8.5, and the GPU uses CUDA driver 396.26.

First, we outline the performance gains of optimized al-
gorithm in Newell machine over our 2017 submission [2].
Second, we compare our triangle counting algorithm with
NVIDIA’s NVGraph library [3] (Ref. Table II and III). Third,
we show Newell machine is about 2-3 times faster than Minsky
for most of the graph dataset with our optimized algorithms
with different memory management schemes (Ref. Figure 1).
Finally, we run very large graphs using all the 4 GPUs and 160
CPU threads to showcase how the optimized triangle counting
algorithm can crunch billions of edges in a less than a minute
(Ref. Table IV and V).

NVIDIA NVGraph Implementation Details: We based
our NVGraph library implementation on the sample example
provided at [3]. First, we load lower adjacency matrix to
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Figure 1. Slowdown of different memory management schemes for triangle
counting (TC) and Truss decomposition (Truss) algorithm relative to the
ZeroCopy code running on Newell. Although unified memory performance
significantly improved in Newell, it is still slow for truss decomposition (Both
algorithms are compared against its Newell’s ZeroCopy implementation).

host memory in CSR format. We explicitly copy the graph
to GPU memory to mitigate the copy overhead. Then we
call nvgraphTriangleCount with NVGRAPH_CSR_32
flag. We use Single GPU memory management scheme
of our triangle counting algorithm for fair comparison with
NVGraph. For both implementations, total execution time
includes GPU kernel execution time and copy time to the GPU.

D. Results

The results for the various computational experiments are
compiled in Tables II-V and Figure 1. From these results, the
following observations can be made:

1) Table II: For triangle counting, our proposed optimiza-
tions result in an average of 47.6x speedup on SNAP
dataset, and an average of 4.84x speedup on synthetic
dataset over our prior submission [2]. Our optimized
algorithm can process up to 334M edges/second for
problems where the CSR can reside in the GPU memory.

2) Table II: The Single GPU version of our optimized
triangle counting implementation is on average 151.7x
(max 476x) faster on SNAP data set, and on average
3.7x (max 6.25x) faster on synthetic data set, compared
to Nvidia’s NVGraph library. For large synthetic graphs,
the speedup factor reduces to slightly lower than 1x.

3) Table III: The single GPU version of our optimized
truss decomposition implementation is on average, 5.7x
faster (max 13.52x) on SNAP data set, and on average
10.91x faster (max 13.9x) on synthetic data set, com-
pared to our prior submission. The optimized algorithm
can process up to 115.7M edges/second for problems
where the CSR can reside in the GPU memory.

4) In majority of triangle counting tests, we observed that
the Newell machine outperforms the Minsky machine
by 1.77x in CPU-OpenMP implementation, 1.8x in
ZeroCopy implementation with 4 GPus, and 2.4x in
Unified memory implementation with 4 GPUs. The
speedup can be attributed to faster interconnect band-
width, and newer generation of CPUs and GPUs.



TABLE II
TRIANGLE COUNTING BENCHMARKS ON DIFFERENT GRAPHS USING SINGLE GPU CONFIGURATION

Graph [1] n m TC Edges/s Speedup
Minsky (2017 Submission) Newell NVGraph Newell (2018 Submission) 2017 vs. 2018 NVGraph vs 2018

as20000102 6,474 12,572 6,584 87,624 27,092 9,179,324 104.76 338.82
ca-GrQc 5,242 14,484 48,260 97,425 34,146 11,389,918 116.91 333.57
oregon1 010331 10,670 22,002 17,144 152,942 51,516 12,561,745 82.13 243.84
ca-HepTh 9,877 25,973 28,339 170,932 60,985 16,373,199 95.79 268.48
p2p-Gnutella04 10,876 39,994 934 278,434 92,201 19,227,384 69.06 208.54
as-caida20071105 26,475 53,381 36,365 362,818 46,531 22,148,726 61.05 476.00
facebook combined 4,039 88,234 1,612,010 590,514 208,333 60,860,189 103.06 292.13
ca-CondMat 23,133 93,439 173,361 606,459 216,614 43,642,242 71.96 201.47
ca-HepPh 12,008 118,489 3,358,499 806,558 273,141 54,188,075 67.18 198.39
email-Enron 36,692 183,831 727,044 1,260,861 423,159 68,954,329 54.69 162.95
ca-AstroPh 18,772 198,050 1,351,441 1,339,316 467,160 65,039,688 48.56 139.22
loc-brightkite edges 58,228 214,078 494,728 1,461,942 473,018 40,508,748 27.71 85.64
cit-HepTh 27,770 352,285 1,478,735 2,364,583 811,563 77,766,095 32.89 95.82
email-EuAll 265,214 364,481 267,313 2,410,955 320,800 61,209,886 25.39 190.80
soc-Epinions1 75,879 405,740 1,624,481 - 928,475 105,567,437 - 113.70
cit-HepPh 34,546 420,877 1,276,868 2,743,282 963,862 127,196,634 46.37 131.97
soc-Slashdot0811 77,360 469,180 551,724 3,026,851 1,068,382 110,349,986 36.46 103.29
soc-Slashdot0902 82,168 504,230 602,592 - 1,150,503 114,767,818 - 99.75
amazon0302 262,111 899,792 717,719 5,744,221 1,837,720 163,615,502 28.48 89.03
roadNet-PA 1,088,092 1,541,898 67,150 9,156,436 3,442,643 127,660,219 13.94 37.08
roadNet-TX 1,379,917 1,921,660 82,869 11,096,636 4,382,919 135,405,980 12.20 30.89
flickrEdges 105,938 2,316,948 107,987,357 12,362,594 5,181,185 215,880,798 17.46 41.67
amazon0312 400,727 2,349,869 3,686,467 14,494,180 4,496,023 288,205,484 19.88 64.10
amazon0505 410,236 2,439,437 3,951,063 15,085,724 4,725,439 273,002,037 18.10 57.77
amazon0601 403,394 2,443,408 3,986,507 15,037,375 4,709,385 271,908,517 18.08 57.74
roadNet-CA 1,965,206 2,766,607 120,676 15,357,241 6,141,124 139,467,006 9.08 22.71
cit-Patents 3,774,768 16,518,947 7,515,023 60,333,708 29,686,790 334,014,352 5.54 11.25
graph500-scale18-ef16 174,147 7,600,696 82,287,285 30,958,048 15,408,326 203,201,787 6.56 13.19
graph500-scale19-ef16 335,318 15,459,350 186,288,972 31,373,108 24,857,258 155,426,618 4.95 6.25
graph500-scale20-ef16 645,820 31,361,722 419,349,784 25,717,713 38,418,934 113,259,001 4.40 2.95
graph500-scale21-ef16 1,243,072 63,463,300 935,100,883 20,010,822 42,544,963 90,784,271 4.54 2.13
graph500-scale22-ef16 2,393,285 128,194,008 2,067,392,370 15,549,149 45,919,052 70,330,803 4.52 1.53
graph500-scale23-ef16 4,606,314 258,501,410 4,549,133,002 12,269,656 38,612,314 49,346,912 4.02 1.28
graph500-scale24-ef16 8,860,450 520,523,686 9,936,161,560 - 34,753,053 35,045,368 - 1.01
graph500-scale25-ef16 17,043,780 1,046,934,896 21,575,375,802 - 28,003,095 27,339,066 - 0.98

TABLE III
TRUSS DECOMPOSITION BENCHMARKS ON DIFFERENT GRAPHS USING SINGLE GPU CONFIGURATION

Graph [1] n m kmax
Edges/s Speedup

Minsky (2017 Submission) Newell (2018 Submission) vs. 2017 submission
as20000102 6,474 25,144 10 121,422 463,223 3.81
ca-GrQc 5,242 28,968 44 120,183 202,471 1.68
oregon1 010331 10,670 44,004 16 160,122 453,213 2.83
ca-HepTh 9,877 51,946 32 237,225 407,249 1.72
p2p-Gnutella04 10,876 79,988 4 528,298 7,140,476 13.52
as-caida20071105 26,475 106,762 16 281,055 670,506 2.39
facebook combined 4,039 176,468 97 26,766 159,387 5.95
ca-CondMat 23,133 186,878 26 474,945 1,416,010 2.98
ca-HepPh 12,008 236,978 239 130,993 263,878 2.01
email-Enron 36,692 367,662 22 123,583 963,079 7.79
ca-AstroPh 18,772 396,100 57 191,690 862,452 4.50
loc-brightkite edges 58,228 428,156 43 239,730 889,012 3.71
cit-HepTh 27,770 704,570 30 220,285 1,159,954 5.27
email-EuAll 265,214 728,962 20 271,220 2,623,830 9.67
soc-Epinions1 75,879 811,480 33 - 1,181,446 -
cit-HepPh 34,546 841,754 25 471,684 1,905,473 4.04
soc-Slashdot0811 77,360 938,360 35 561,612 1,907,923 3.40
soc-Slashdot0902 82,168 1,008,460 36 - 1,979,478 -
amazon0302 262,111 1,799,584 7 4,923,191 33,140,027 6.73
roadNet-PA 1,088,092 3,083,796 4 14,738,996 93,106,578 6.32
roadNet-TX 1,379,917 3,843,320 4 16,993,209 98,403,250 5.79
flickrEdges 105,938 4,633,896 574 138,952 641,408 4.62
amazon0312 400,727 4,699,738 11 4,081,947 26,760,310 6.56
amazon0505 410,236 4,878,874 11 2,840,998 25,936,061 9.13
amazon0601 403,394 4,886,816 11 2,392,998 28,369,638 11.86
roadNet-CA 1,965,206 5,533,214 4 22,254,544 115,721,301 5.20
cit-Patents 3,774,768 33,037,894 36 3,711,498 41,798,278 11.26
graph500-scale18-ef16 174,147 7,600,696 159 79,320 1,102,217 13.90
graph500-scale19-ef16 335,318 15,459,350 213 83,976 969,474 11.54
graph500-scale20-ef16 645,820 31,361,722 284 74,387 751,343 10.10
graph500-scale21-ef16 1,243,072 63,463,300 373 58,739 476,772 8.12
graph500-scale22-ef16 2,393,285 128,194,008 485 - 296,406 -
graph500-scale23-ef16 4,606,314 258,501,410 625 - 187,628 -



TABLE IV
ZERO-COPY AND UNIFIED MEMORY TRIANGLE COUNTING BENCHMARKS ON LARGE GRAPHS

Graph [1] n m TC Single GPU Zero-copy (4 GPUs) Unified (4 GPUs)
Time (s) Edges/s Time (s) Edges/s Time (s) Edges/s

flickrEdges 105,938 2,316,948 107,987,357 0.011 215,880,798 0.213 10,867,996 0.026 88,016,563
cit-Patents 3,774,768 16,518,947 7,515,023 0.049 334,014,352 0.196 84,071,878 0.140 118,021,984
Kmer - Graph5 55,042,369 58,608,800 1,443 0.092 638,440,087 0.490 119,559,044 0.603 97,132,052
Network - Graph5 226,196,185 240,023,945 26 5.925 40,511,923 9.139 26,262,472 7.091 33,848,266
graph500-scale18-ef16 174,147 7,600,696 82,287,285 0.037 203,201,787 1.287 5,906,233 1.356 5,606,713
graph500-scale19-ef16 335,318 15,459,350 186,288,972 0.099 155,426,618 2.109 7,329,200 2.399 6,445,287
graph500-scale20-ef16 645,820 31,361,722 419,349,784 0.277 113,259,001 4.323 7,255,159 2,841.665 11,036
graph500-scale21-ef16 1,243,072 63,463,300 935,100,883 0.699 90,784,271 19.481 3,257,717 7,018.016 9,043
graph500-scale22-ef16 2,393,285 128,194,008 2,067,392,370 1.823 70,330,803 77.586 1,652,290 17,019.189 7,532
graph500-scale23-ef16 4,606,314 258,501,410 4,549,133,002 5.238 49,346,912 85.741 3,014,908 >18,000 -
graph500-scale24-ef16 8,860,450 520,523,686 9,936,161,560 14.853 35,045,368 367.430 1,416,659 >18,000 -
graph500-scale25-ef16 17,043,780 1,046,934,896 21,575,375,802 38.294 27,339,066 1,266.137 826,873 >18,000 -
Friendster 119,432,957 1,799,999,986 191,716 - - 57.036 31,558,975

TABLE V
ZERO-COPY TRUSS DECOMPOSITION BENCHMARKS ON LARGE GRAPHS

Graph[1] n m kmax
Single GPU Zero-copy (4 GPUs)

Time (s) Edges/s Time (s) Edges/s
flickrEdges 105,938 2,316,948 574 7.225 320,704 79.607 29,105
cit-Patents 3,774,768 16,518,947 36 0.790 20,899,139 4.917 3,359,763
Kmer - Graph5 55,042,369 58,608,800 3 0.497 117,814,922 2.757 21,261,171
graph500-scale18-ef16 174,147 7,600,696 159 6.896 1,102,217 61.353 123,885
graph500-scale19-ef16 335,318 15,459,350 213 15.946 969,474 192.019 80,509
graph500-scale20-ef16 645,820 31,361,722 284 41.741 751,343 683.304 45,897
graph500-scale21-ef16 1,243,072 63,463,300 373 133.110 476,772 2,868.196 22,127
graph500-scale22-ef16 2,393,285 128,194,008 485 432.494 296,406 9,709.680 13,203
graph500-scale23-ef16 4,606,314 258,501,410 625 1,377.733 187,628 >10,000 -

TABLE VI
SINGLE GPU TRIANGLE COUNTING COMPARISON WITH 2017

CHAMPIONS.

Graph [1] Speedup over [9] Speedup over [10]
amazon0312 1.55 1.24
cit-HepTh 1.28 0.71
cit-Patents 1.04 1.45
email-EuAll 0.93 0.62
soc-Slashdot0902 1.43 1
graph500-scale18 1.59 2.06
graph500-scale23 0.97 1.46
graph500-scale24 1.02 1.44
graph500-scale25 1.47 1.49

5) The performance improvement is magnified in truss
decomposition. We observe that, on average we achieve
3.04x, 3.66x and 3.0x speedup factors over the Minsky
machine, for CPU-OpenMP, 4 GPU ZeroCopy mem-
ory, and 4 GPU Unified memory implementations
(resp.), suggesting that majority of the speedup was
obtained from algorithmic optimizations.

6) Similar to [2], we observed that the Unified memory
implementation performs worse than the ZeroCopy
implementation, which in turn performs worse than the
Single GPU one. Most of the performance loss in the
Unified memory and ZeroCopy implementations
can be attributed to the limited NVLink bandwidth. Al-
though it is improved in the Newell system, the NVLink
bandwidth is still much lower than the GPU memory
bandwidth. A promising research direction would be
to improve data locality by partitioning the graph into
pieces that can be contained within the GPU memory.

7) Tables IV shows that our optimized triangle counting al-
gorithms with ZeroCopy memory (4GPU) was able

to count triangles for the billion-edge Friendster graph
within a minute, which is quite remarkable.

E. Comparison with 2017 Triangle Counting Champions

In Table VI, we compare our triangle counting performance
with the performance of two champions from last year [9],
[10]. Our Single GPU triangle counting configuration in
Newell system outperforms [9] by up to 1.59x and [10] by up
to 2.06x for most graphs. For a few smaller graphs we exhibit
slightly lower performance compared to 2017 champions.

V. CONCLUSION

To summarize, we proposed and discussed various algorith-
mic optimizations for triangle counting and truss decompo-
sition over our prior submission. With these optimizations,
we achieved 47.6x and 5.7x on average (max 117x and
13.52x) on triangle counting and truss decomposition over
our prior submission on SNAP datasets and up to 6.5x and
13.9x on synthetic datasets. We also showed that our efficient
ZeroCopy implementation of the triangle counting algorithm
can process billions of edges from the Friendster dataset, in
less than a minute. We discussed the performance benefits
offered by the new hardware and established that most of
the improvements are due to algorithmic optimizations. This
makes us believe that there are still many improvements in
the algorithmic space that are yet to be explored. Partitioning
the graph into pieces that reside in the native memory of the
processing element (RAM for CPU and device memory for
GPU), is one such example. This, however, is a non-trivial
task, and it is left as a future research direction.
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