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Abstract—In this paper, we present an update to our previous
submission on k-truss decomposition from Graph Challenge
2018. For single GPU k-truss implementation, we propose mul-
tiple algorithmic optimizations that significantly improve perfor-
mance by up to 35.2x (6.9x on average) compared to our previous
GPU implementation. In addition, we present a scalable multi-
GPU implementation in which each GPU handles a different
‘k’ value. Compared to our prior multi-GPU implementation,
the proposed approach is faster by up to 151.3x (78.8x on
average). In case when the edges with only maximal k-truss are
sought, incrementing the ‘4’ value in each iteration is inefficient
particularly for graphs with large maximum k-truss. Thus, we
propose binary search for the ‘4’ value to find the maximal
k-truss. The binary search approach on a single GPU is up to
101.5 (24.3x on average) faster than our 2018 k-truss submission.
Lastly, we show that the proposed binary search finds the
maximum k-truss for “Twitter”” graph dataset having 2.8 billion
bidirectional edges in just 16 minutes on a single V100 GPU.

Index Terms—GPU, CUDA, k-truss decomposition, binary
search, multi-GPU, multi-node

[. INTRODUCTION

Finding cohesive structures in a large graph is an important
data mining technique for information retrieval in a variety of
areas such as genomics, social media, cybersecurity, computer
networks, public health and many more. Due to the advance-
ments in cloud services that naturally curate and maintain
big datasets, these datasets have been growing exponentially.
Thus, there is an immediate need for developing innovative
algorithms, software and hardware to efficiently process these
big datasets in reasonable time.

k-truss decomposition is a graph analysis technique and the
focus of this paper. k-truss is a cohesive subgraph in which
each edge is part of at least £ — 2 triangles. This subgraph re-
laxes the concept of clique and can be computed in polynomial
time. At the high level, state-of-the-art implementations of k-
truss decomposition algorithm [1], [2], [3] for a given value
of k£ are comprised of three major steps: 1) Determine the
trussness value to each edge in the graph which fundamentally
tells the number of triangles each edge is part of; 2) For a
given value of k, remove edges with trussness value less than
k —2, often called as “peeling”’; 3) Remove the affected edges
until none of the edge in the graph is left with trussness less
than k& — 2. If the graph is not empty then the value of k is
incremented by one, and the above three steps are repeated
until we reach the maximum k-truss value where the graph is
empty. However, the incremental approach in which &k value
is incremented by one after each iteration causes additional
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computations if only the edges with the maximum k-truss were
to be determined. In this case a faster approach is required.

In this paper, we redesigned and improved our peeling-
based [1] incremental k-truss decomposition algorithm by
enhancing triangle counting, affected edge identification, and
stream compaction steps. We also present our multi-GPU
implementation that scales better than the 2018 submission. In
our prior submission, edges were divided evenly across GPUs
such that a single k& value is calculated at the end of each
iteration. This approach introduced significant slowdown as
we scaled the number of GPUs due to a high number of page
faults from actively reading and updating the shared lists at the
short update and marking the affected edge steps. To address
this limitation, we propose to evaluate a different k£ value in
parallel across GPUs at each iteration. Although, the proposed
approach introduces load imbalance, the scaling efficiency gain
is significantly better than the prior approach primarily due to
the reduced number of GPU page faults.

However, the incremental approach is inefficient when only
the maximum k-truss is to be found as mentioned earlier. To
address this inefficiency, we propose “Binary k-truss decom-
position” which achieves a significant reduction in the required
number of iterations with further improved performance.

We note that the previous year’s champions [3] reported the
time for £ = 3 truss and did not proceed to find the largest
truss. While the former depends on the efficiency of triangle
counting, there is a fair amount of sophisticated work involved
in treating deleted edges as we move to find higher values of
k. Thus, a direct comparison between the proposed approach
and the approach of the 2018 champions is not possible.

Compared to our baseline [1], we make the following
contributions in the paper:

o An efficient single GPU implementation of k-truss de-
composition outperforming the our prior work by up
to 35.2x and 151.3x for single GPU and multi-GPU
implementations, respectively.

o A scalable multi-GPU implementation of k-truss decom-
position.

o A binary k-truss algorithm to search for the largest k-
truss which speeds up the computation by 101.5x (24.3x
on average) on a single GPU.

The rest of the paper is organized as follows. Section II
covers the related work for k-truss decomposition and particu-
larly summarizes the efforts in the graph challenge community.
Section IIT goes over the proposed k-truss algorithm and
related optimizations. Section IV provides the implementation



details of single GPU and multi-GPU approaches. Results are
covered in Section V followed by conclusion in Section VI.

II. LITERATURE REVIEW

In the last couple of years of the Graph Challenge, static
k-truss decomposition challenge has seen a number of par-
ticipants, particularly trying to boost the performance of the
k-decomposition algorithm [2], [3], [4], [5], [1], [6], [7]. In
[6] instead of calculating the exact triangle support for an
edge, triangles are counted until the count is > (k — 2)
which is enough to know if the edge needs to be removed.
Further optimization is obtained by removing the nodes with
the degree < (k — 1), an observation taken from [8]. k-
truss decomposition presented in [2] is a very large scale
CPU implementation of the graphs, using 128 to 256 compute
nodes and uses degree-ordered directed graph. The triangle
counting is done once in the beginning and then the count
is decremented as the triangles unroll. In [9], k-truss decom-
position uses “peeling” strategy and evaluates using GPUs.
After the removal of an edge the support of affected edges
is decremented. Input matrix compaction presented in [3] is
an update on what was presented in [9]. The objective of
matrix compaction is to reduce the variance in the adjacency
list thereby assist in minimizing the load imbalance among
thread blocks. In [7], a multi-stage peeling algorithm is pro-
posed which relies on communication between threads using
message queues. Doubly-linked lists per truss value are used
to insert and delete edges in O(1) time. Neighbor list inter-
section is used for triangle counting. In [5], an approximate
algorithm is run before the exact algorithm which returns the
exact k-truss value. Hardware optimizations are applied for
intersecting adjacency lists and triangle count is decremented
as the triangles are torn down by the removal of edges. CPU-
GPU collaboration strategy presented in [1] offloads some of
the work load to CPU and uses delayed stream compaction to
physically change the graph until there are no more affected
edges. Our work is an update on the method described in [1].

ITI. k-TRUSS DECOMPOSITION

In this section, we explain the algorithmic improvements
we made over our prior approach for k-truss decomposition
[1]. We will first discuss optimized incremental approach and
then discuss the Binary % truss decomposition algorithm.

A. Incremental k-truss Decomposition

The pseudocode for the improved k-truss decomposition
algorithm is shown in Algorithm 2. The first step is to initialize
three lists named as ‘Keep’, ‘Affected’ and ‘Reversed’ whose
sizes are equal to number of edges in the graph. ‘Keep’ holds
a flag for each edge to indicate whether the edge is kept (not
deleted). Each element of the ‘Affected’ list also corresponds
to an edge and indicates whether the edge is affected by the
deletion of any other edge with which it shares triangles. For
any edge (u,v) in an undirected graph, we also need to know
the index of edge (v,u) to ensure that both edges are marked
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as kept or affected. The index of edge (v,u) is kept in the list
named as ‘Reversed’.

The incremental approach starts with k£ = 3, the minimum
possible value of k-truss. The outer while loop at Line 3
of Algorithm 2 repeats until we reach the maximum k-truss
where the graph becomes empty. The inner while loop at
Line 5 is repeated until no affected edges are found. For any
edge in the loop at Line 8 with v < v, if it is kept and
affected then triangle counting is performed at Line 11. If
triangle count is less than k — 2, both edges (u,v) and (v,u) are
deleted at Line 13. Other edges that share the triangle with the
deleted edges will be marked as affected as shown in Line 14.
All the deleted edges are then counted as in Line 17. After
each iteration of the outer while loop, stream compaction is
performed to physically remove the deleted edges, as shown
in Line 29. Compared to our earlier submission we make
following algorithmic optimizations:

e In our earlier implementation, reduction is performed
over the *Affected’ list which is an unnecessary repetitive
step taking place inside the inner while loop. We take a
different approach and introduce affected hint flag per
thread to indicate if there are any edges a thread has
effected. The inner while loop uses this flag and continues
until there are no affected edges to process, as shown in
Line 21 of Algorithm 2.

o While doing triangle counting (Algorithm 3) we keep
track of the indices of the first and last intersections of the
two adjacency lists. These indices define the range where
all the affected edges can be found to avoid traversing
full length of adjacency lists during the affected edge
determination phase in Line 14 of Algorithm 2.

o To further optimize the affected edge determination
phase, we start marking affected edges early during the
triangle counting phase as shown in Lines 16-22 of
Algorithm 3. In the triangle counting phase, for each
edge, when the sum of the remaining elements in one
of the two adjacency lists and the triangles we have
already counted (7°C') falls below k — 2, we anticipate
that the edge will be deleted. Thus, we start to mark
all the edges subsequently detected by the intersections
as affected. As a result, by the time we perform the
affected edge determination phase, line 14 Algorithm 2,
some of the affected edges have already been marked
by the triangle counting phase. As a result, the affected
edge determination phase needs to traverse the list of
edges up to the indices at which the triangle counting
phase started to mark the edges as affected. With this
optimization, we reduce the total number of intersections
performed by the triangle counting phase and the affected
edge determination phase.

o Stream compaction is an expensive operation that can
take more time than the inner while loop itself. Thus, we
only perform stream compaction when the percentage of
deleted edges exceeds some predefined threshold such as
10%.



Algorithm 1 Initialize

Algorithm 2 Find k-truss

Input: E, Keep, Affected, Reversed
1: for each e € F do

2 keep[e] < TRUE

3 affected[e] <— FALSE

4: ep = FindIndex(u,v)

5 Reversed[e] = ep

6: end for

B. Binary k-truss Decomposition

Trusssness of an edge represents the highest k-truss sub-
graph to which the edge belongs. Incremental enumeration of
k values helps decide the trussness value of each edge in the
graph. However, when only the edges of the maximal k-truss
are required, the incremental approach is inefficient and time-
consuming. To address this, we propose binary search based
k truss decomposition algorithm.

However, for a binary search based approach to work,
knowing the upper bound value of k£ is a necessity. We
approximate the upper bound value for k£ using Algorithm 6
for a given graph. We note a k-truss with k£ nodes each with
a degree of k — 1 forms a clique [8]. In addition, it is also
the minimum requirement to form a k-truss for the number of
nodes and degree per node. This implies that for the largest
possible k-truss one needs to find the largest degree d for
which there are at least d + 1 nodes. The value of d + 1
becomes the upper bound value of k.

In Algorithm 6, we use a map with node degree as key
and the number of nodes that have this degree as value. We
traverse the map from the largest to smallest degree and keep
aggregating the number of nodes until we reach the largest
degree d for which there are d + 1 aggregated number of
nodes. We use the value of d + 1 as the upper bound value
of k to implement the binary k-truss algorithm. We make the
following modifications to Algorithm 2:

« The outer while loop evaluates the next k as k = (kyin +
Eupper_bvound)/2 and runs until the range between Ky,
and Eypper_bound cannot be further divided.

o In the binary approach, two successive k values can be
far apart. Therefore, before processing the next k value,
it is very likely that there are a large number nodes with
degree less than or equal to k — 1. The edges of these
nodes are not involved in the k-truss to be evaluated.
Marking the edges of those nodes as ’deleted’ reduces
the total number of edges to be evaluated and improves
performance. We do not perform this step for the incre-
mental approach because the number of eliminated edges
between successive k values is low and thus the overhead
defies the benefit.

o After evaluating for a value of k:

If the graph is not empty, perform stream compaction
and set ki, to k.

If the graph is empty, the evaluated k is larger than
the maximal % and, thus, the ‘Keep’ array is set to true
to fall back to the graph as in the previous state. We also
set kupper_bound to k.
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Input: E, NumEdges, Keep, Affected, Reversed
Output: &
1: Initialize(...) > Algo. 1
2: k<3
3: while TRUE do
4 MoreAftected < TRUE
5: while MoreAffected do
6: MoreAffected «+— FALSE
7 NumDelE, NumEAffBy < 0
8 for each e(u,v) € E do
9: if Keep[e] AND Affected[e] AND u<v then
10: Affected[e] «+— FALSE
11: TC,s1,52,/1,12,NumEAffBy + IntersectTc(...)> Algo. 3
12: if TC < k — 2 then
13: Keep[e], Keep[Reserved[e]] < FALSE
14: NumEAffBy < IntersectAffect(...) > Algo. 4
15: end if
16: if !Keep[e] then
17: NumDelE + +
18: end if
19: end if
20: end for
21: if NumEAffBy> 0 then
22: MoreAftected <— TRUE
23: end if

24: end while
25: if NumDelE ==NumEdges then

26: Break

27: else

28: k++

29: E, NumEdges <— StreamCompact(...)
30: end if

31: end while

32: return k

Algorithm 3 List Intersection for Triangle Counting

Input: u,v, RowPointers
Output: TC,s1,s2,/1,/2,NumEAffBy

1: uptr < RowPointer[u] , vpi <~ RowPointer[v]
2: Ugpq < RowPointer[u+1] , vepq < RowPointer[v+1]
3: FirstIntersect < TRUE
4: while TC < k — 2 AND uptr, Vptr < Uend; Vend do
5 wl = Zd[up¢r]
6: w2 = Zd[vper]
7.
8
9

if wl=w2 then
if keep[w1] AND keep[w2] then

H TC++
10: if FirstIntersect then
11: sl upyr
12: $2 < Vptr
13: FirstIntersect «<— FALSE
14: U, NV <= Uepd — Uptr, Vend — Vptr
15: if (nu AND nv > k — 2 — TC) then
16: 1 <= uptr +1
17: 2 Vptr +1
18: else
19: NumEAffBy < Affect(...) > Algo. 5
20: end if
21: end if
22: else if wl<w2 then
23: +HUp
24: else
25: ++Vptr
26: end if
27: end if

28: end while

IV. GPU IMPLEMENTATION

We use unified memory to store the graph and the auxiliary
lists which are ‘Keep’, ‘Affected’ and ‘Reversed’ in both single



Algorithm 4 List Intersection for Affected Edges Determina-
tion

Input: s1,52,/1,/12

Output: NumEAffBy
11 Uptr, Vptr, Uend, Vend < s1,82,11,12
2: while Uptr, Vptr < Uend, Vend dO

3: wl = Zd[up¢r]

4: w2 = Zd[vpir]

5: if wl=w2 then

6: NumEAffBy «+ Affect(...) > Algo. 5
7: else if wl<w2 then

8: + + uptr

9: else

10: + + Vptr

11: end if

12: end while

Algorithm 5 Affected Edges Determination

Input:
Output:
1: NumAff < NumAffE
2: yl < Reserved[up¢r]
3: y2 < Reserved|vper]
4: if !Affected[up¢r| then
5: |Affected[uptr] < TRUE
6.
7
8
9

Uptr, Vptr, Keep, Affected, Reversed, NumAffE
NumAffE

: NumAffE + +
. end if
. if !Affected[vp¢r] then
: Affected[vpir| < TRUE
10: NumAffE + +
11: end if
12: if !Affected[y1] then
13: Affected[yl] + TRUE
14: NumAffE + +
15: end if
16: if !Affected[y2] then
17: Affected[y2] <~ TRUE
18: NumAffE + +
19: end if
20: return NumAffE

Algorithm 6 Approximating initial & upper bound(k,;)
Input: DegMap #DegMap=map(degree, NumberOfNodes)

1: TotalNodes = 0

2: for each (degree, NumberOfNodes) € DegMap do

3: CurrentDegree <— degree+1

4 TotalNodes <— TotalNodes + NumberOfNodes
5 if TotalNodes > CurrentDegree then

6: kb = CurrentDegree

7T break

8: end if

9: end for

10: return k.

GPU and multi-GPU implementation. The graph we use is
undirected and stored in COO format with an additional row
pointer array adopted from standard CSR format. We call this
hybrid format COO+CSR. For both implementations, we use a
single CUDA kernel, we call it the core kernel, to perform the
for loop, lines 8-20 in Algorithm 2. A thread is assigned to an
edge to perform triangle counting and edge affecting steps. The
core kernel writes to ‘Keep’ and ‘Affected’ lists and outputs
two values: the number of deleted edges and a hint to indicate
if there are any affected edges. For triangle counting step, we
use the standard two-pointer intersection algorithm, with the
additional optimizations explained in Section III to improve
affecting edges step. To count the deleted edges, we perform
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reduction operation at the block and then at the grid levels.
The core kernel repeats until there is no more affected edges.
To perform stream compaction on source and destination lists,
we use device-wide partition routine using Nvidia CUB [10]
to separate kept and deleted edges. Then, we launch two other
kernels to: a) rebuild row pointer list and mark all edges as
kept and not affected, and b) rebuild ‘Reversed’ list.

Multi-GPU Specific Considerations: In the 2018 multi-
GPU implementation, edges were divided evenly across GPUs
such that a single k& was evaluated at the end of each iteration.
All the auxiliary data structures and the graph are stored in
the unified memory. By default, sharing unified memory pages
between GPUs causes many page faults due to page migration
among GPUs and CPU. Moreover, page faults occur even if
the shared pages are read-only. This makes the multi-GPU
solution very slow and infeasible.

To address the above limitation, we use CUDA unified
memory hints. Since the graph data structure and ‘Reversed’
lists are read only, we set the cudaMemAdviseSetReadMostly
hint for these two data structures prior to the core kernel
executions such that the pages are duplicated avoiding GPU
page faults. This significantly improves the core kernel perfor-
mance. However, stream compaction physically changes the
graph and ‘Reversed’ lists. Thus, updating these lists while
the read-mostly hint is set can still generate many page faults.
To repress this, before the stream compaction step, we unset
the read-mostly hint using cudaMemAdviseUnsetReadMostly
for these data structures and set it again after the execution of
the stream compaction step.

Although the unified memory hints reduces the number of
page faults, it cannot remove the page faults that occurs from
the ‘Affected’ list. This list is randomly read and updated by
multiple GPUs throughout the core kernel execution. Memory
hints are useless for this list as maintaining coherent view of
the data is still needed across GPUs. One possible solution is
to privatize the Affected list such that each GPU has its own
copy. However, GPUs would need to merge and distribute their
results among them in every iteration of the inner while loop,
line 5 of Algorithm 2. This becomes an expensive solution
contributing to significant increase in memory traffic between
GPUs and CPU.

To overcome aforementioned limitation, we propose to
privatize ‘Keep’ and ‘Affected’ lists and assign each GPU with
a consecutive k value to execute the outer loop of Algorithm
2. Compared to the program execution in the single GPU
case, multi-GPU approach executes the incremental k-trusss
decomposition algorithm in strides as shown in Figure 1.

Each box in the Figure 1 represents an iteration of the k-
truss decomposition algorithm. Let’s assume ‘S’ as the number
of edges in the input graph and ‘d’, a constant (for simplicity)
the number of deleted edges in each iteration step. In the case
of single-GPU implementation, in each iteration of k value, a
new graph of size equal to the S — d is provided as input to
check if the sub-graph is still a truss.

However, in case of multi-GPU implementation, each GPUs
concurrently execute the core kernel for consecutive k values
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(b) Multi-GPU implementation

Figure 1.
timeline.

An example of the single and multi-GPU incremental approach

on the same input graph in each stride. At the end of each
stride, all GPUs synchronize at line 25 present in Algorithm 2
to ensure there are no more affected edges found by any other
GPU.

We perform stream compaction using the ‘Keep’ of the
largest k value in current stride in case all the GPUs have non-
empty graphs and feed the resulting graph as input graph to
the next stride. Otherwise, k.. is found and we exit the outer
while loop, lines 3-31 of Algorithm 2. We linearly scan across
the GPUs to determine the k,,, value. The proposed approach
completely avoids any sharing of ‘Affected’ and ‘Keep’ lists
between the GPUs and removes the page fault overhead thus
providing higher performance. It is important to mention here
that since each GPU has a different £ value to process, load
imbalance is known to happen. Other GPUs has to wait for
the GPU that evaluates the largest k value at each iteration.
However, we were able to solve a fundamental limitation to
scaling out with this approach, which is the privatization of
‘Keep’ and ‘Affected’ lists.

Processing Large Graphs: Processing large graphs such
as “Twitter Follower”, even with the binary-based Fk-truss
decomposition, is still a challenge on its own. To efficiently
process large graphs, we add an additional optimization to
our binary-based k-truss decomposition algorithm with the
observation that the initial steps of £ computation consumes
large amount of memory and compute. Our empirical study
of graphs shows that the maximum £k value is always larger
than 5% of Eypper_bound- Thus, before the first iteration of the
binary approach, we prune the nodes along with their edges
having out-degree less than or equal to 5% of kyupper_bound- It
significantly helps to reduce the number edges to be processed
by the core kernel resulting in further performance improve-
ment. After the first iteration of k-truss, we set k,,;, to the
current k& value and execute the binary approach as explained
in Section III-B. If the graph is empty graph after the first
iteration of k-truss implies that our estimation of the first k
has exceeded the maximum £ value. In this case, we fall back
to the original copy of the graph.

V. RESULTS AND DISCUSSION

In this section, we discuss how our optimized approach
compares with our prior submission. First, we will discuss the
performance improvements of the incremental k-truss decom-
position approach. Second, we will discuss how our optimized
incremental approach scales with multi-GPU implementation.
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Third, we evaluate the binary-based k-truss decomposition
approach and show that it is significantly faster when only the
maximum trussness is sought. Lastly, to measure the benefit
of the binary-based k-truss decomposition approach, we use
a large graph dataset “Twitter” having 2.8 billion edges and
show that maximum trussness can be found in just 16 minutes
using a single V100 GPU.

Evaluation Platform and metrics: We use a node from the
NCSA HAL cluster to evaluate the proposed approaches [11].
The node has two sockets, each having 20-core IBM POWER9
CPU@2.4 GHz. Each CPU hosts 2 NVIDIA V100 GPUs with
16 GB HBM2. There is 72TB RAID array, NFS-mounted via
IB EDR. The machine has a DRAM size of 256GB and has
NVLink bandwidth of 150 GB/s. We use CUDA version 10.1
to run the experiments. The system described is very similar to
the one we used previous year except the last year submission
used CUDA version 9.2 and had 512GB of DRAM memory.

We use the evaluation metrics provided by the Graph Chal-
lenge to represent our results and they include total number
of edges, total number of nodes, and edges (bidirectional)
per second. Table I presents the results for our single GPU
implementation using the incremental and binary k-truss ap-
proaches. The measurements include the time taken by all the
steps executed after reading the graph on CPU.

Single-GPU Incremental approach: From Table I, the pro-
posed incremental approach outperforms our baseline for all
the graphs by up to 35.2x (6.9x on average). This performance
improvement can be attributed to the removal of unnecessary
reduction step that was occurring in the inner while loop,
optimized triangle counting as described in Section III-A and
minimizing the number of stream compaction steps. These
performance optimizations have enabled us to execute graphs
that has more than a billion edges using a single V100 GPU
with the help of unified memory in a reasonable time which
was infeasible in 2018 submission.

Multi-GPU incremental approach: Next, we discuss the
strong scaling of the incremental approach. From Figure 2,
we note that the performance improves as the number of
GPUs increases for the graphs with high maximum k-truss.
The maximum achieved speedup is up to 2.5x with 4 GPUs
compared with the single-GPU implementation. However,
the parallel scaling efficiency is still sub-optimal compared
to the theoretical efficiency due to the overhead associated
with the multi-GPU implementation such as multiple kernel



TABLE I
SINGLE GPU IMPLEMENTATION RESULTS FOR THE PROPOSED INCREMENTAL AND BINARY COMPARED TO OUR 2018 SUBMISSION.

Graph n m Kkmax Newell (2018 HAL Incremental Speedup vs HAL Binary Speedup vs
submission) Edges/s (2019 Submission) Edges/s 2018 submission (2019 submission) Edges/s 2018 submission
as20000102 6,474 25,144 10 463,223 3,024,380 6.5 4,740,010 10.2
ca-GrQc 5,242 28,968 44 202,471 2,326,810 11.5 11,687,000 57.7
oregonl_10331 10,670 44,004 16 453,213 2,433,110 5.4 10,251,700 22.6
ca-HepTh 9,877 51,946 32 407,249 14,326,700 352 24,671,100 60.6
p2p-Gnutella04 10,876 79,988 4 7,140,476 23,577,000 33 42,050,500 59
as-caida20071105 26,475 106,762 16 670,506 4,544,100 6.8 8,293,890 12.4
facebook_combined 4,039 176,468 97 159,387 1,390,120 8.7 9,514,610 59.7
ca-CondMat 23,133 186,878 26 1,416,010 8,272,540 5.8 62,425,700 44.1
ca-HepPh 12,008 236,978 239 263,878 3,299,680 12,5 26,789,300 101.5
email-Enron 36,692 367,662 22 963,079 8,394,100 8.7 19,156,400 19.9
ca-AstroPh 18,772 396,100 57 862,452 6,119,610 7.1 69,090,800 80.1
loc-brightkite_edges 58,228 428,156 43 889,012 9,116,940 10.3 37,786,600 42.5
cit-HepTh 27,770 704,570 30 1,159,954 9,674,120 8.3 20,808,800 17.9
email-EuAll 265,214 728,962 20 2,623,830 27,098,600 10.3 26,499,100 10.1
soc-Epinions1 75,879 811,480 33 1,181,446 8,412,780 7.1 16,258,600 13.8
cit-HepPh 34,546 841,754 25 1,905,473 21,494,900 113 45,908,000 24.1
soc-Slashdot0811 77,360 938,360 35 1,907,923 18,399,200 9.6 34,133,000 17.9
soc-Slashdot0902 82,168 1,008,460 36 1,979,478 18,638,700 9.4 33,649,200 17.0
amazon0302 262,111 1,799,584 7 33,140,027 178,984,000 5.4 175,205,000 53
roadNet-PA 1,088,092 3,083,796 4 93,106,578 282,585,000 3.0 243,933,000 2.6
roadNet-TX 1,379,917 3,843,320 4 98,403,250 290,285,000 29 242,104,000 2.5
flickrEdges 105,938 4,633,896 574 641,408 1,854,380 29 34,883,300 54.4
amazon0312 400,727 4,699,738 11 26,760,310 131,725,000 49 196,273,000 7.3
amazon0505 410,236 4,878,874 11 25,936,061 122,850,000 4.7 179,852,000 6.9
amazon0601 403,394 4,886,816 11 28,369,638 131,233,000 4.6 188,468,000 6.6
roadNet-CA 1,965,206 5,533,214 4 115,721,301 295,564,000 2.6 252,762,000 22
cit-Patents 3,774,768 33,037,894 36 41,798,278 161,032,000 39 187,762,000 4.5
graph500-scale18-ef16 174,147 7,600,696 159 1,102,217 2,419,760 22 18,769,600 17.0
graph500-scale19-ef16 335,318 15,459,350 213 969,474 2,042,130 2.1 13,279,800 13.7
graph500-scale20-ef16 645,820 31,361,722 284 751,343 1,669,410 22 11,850,600 15.8
graph500-scale21-ef16 1,243,072 63,463,300 373 476,772 1,143,670 2.4 4,725,110 9.9
graph500-scale22-efl6 2,393,285 128,194,008 485 296,406 814,933 2.7 4,303,600 14.5
graph500-scale23-ef16 4,606,314 258,501,410 625 187,628 586,391 3.1 3,651,540 19.5
graph500-scale24-ef16 8,860,451 520,523,686 791 - 387,454 - 3,063,770 -
graph500-scale25-ef16 17,043,781  1,046,934,896 996 - 244,705 - 902,447 -

synchronization, kernel launch overheads and many others.
For the ‘cit-Patents’ and ‘Amazon0601° graphs, we observe
a significant slow down on the execution time as we move
from single GPU to four GPUs. The core kernel execution for
these two graphs in the single GPU is quiet fast compared to
the rest of the graphs as shown in Table I. This implies as
we move to two or more GPUs the overhead from multi-GPU
stream compaction becomes significant compared to the core
kernel execution and is the primary limiter for the scaling.
Stream compaction of the graph requires frequent movement
of the data across GPUs. However, for the other graphs, the
time taken by the core kernel is still larger than the multi-
GPU stream compaction step. Thus, the scaling efficiency is
comparatively better.

Binary k-truss decomposition: Next let us dive into binary
k-truss decomposition approach where the user only needs
to the know the maximum truss in a input graph. Since the
binary approach allows to skip computing several k values, we
obtain significant speed up, up to 101.5x (24.3x on average)
with the single GPU implementation compared to our 2018
baseline as shown in Table I. Comparing to our proposed
incremental approach, the binary approach provides a speed
up of 18.8x (4.1x on average). Considering the graphs with
high maximum Ek-truss, such as 50 and above, the binary
implementation is 7.8x and 38.6x faster on average than
our proposed incremental and the baseline implementations,
respectively. However, the proposed incremental approach is
faster than the binary approach when the maximum k& value is
very small such as roadNet graphs.
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To show the benefit of binary k-truss decomposition ap-
proach, we process ~Twitter Follower” graph having 41 million
vertices, 1.4 billion edges (2.8 billion bidirectional edges),
and 34 billion triangles [12]. Incremental approach could not
complete calculating the maximum k-truss value in a feasible
time (hours). However, the binary approach processed the
graph to find its maximum k-truss just less than 16 minutes on
a single NVIDIA V100 GPU. This clearly shows the benefit
of binary approach if the user is only interested in knowing
the maximum trussness of the graph.

VI. EXTRA CONTRIBUTIONS TO THE COMMUNITY

Our k-truss decomposition code is in the Pangolin library,
currently available at https://github.com/c3sr/pangolin

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented multiple algorithmic optimiza-
tions for k-truss decomposition. We also introduced binary k-
truss decomposition to find the maximum k-truss. Compared
to our last year’s submission, we achieved an increase in
speed up to 35.2x and 151.3x on single and multi-GPUs,
respectively. For the binary approach, we were able to increase
the speed up to 101.5x on a single GPU. Moreover, we showed
how the binary search approach can be leveraged to process
“Twitter Follower Graph” on a single GPU in just under 16
minutes to find maximum k-truss. Our next step to improve
the performance is to perform graph partitioning as currently
the scaling efficiency is still limited by data transfer overhead
across GPUs.
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