
Accelerating Sparse Deep Neural Networks on FPGAs
Sitao Huang∗, Carl Pearson∗, Rakesh Nagi∗, Jinjun Xiong†, Deming Chen∗, Wen-mei Hwu∗

∗University of Illinois at Urbana-Champaign, †IBM Research
{shuang91, pearson, nagi, dchen, w-hwu}@illinois.edu, jinjun@us.ibm.com

Abstract—Deep neural networks (DNNs) have been widely
adopted in many domains, including computer vision, natural
language processing, and medical care. Recent research reveals
that sparsity in DNN parameters can be exploited to reduce
inference computational complexity and improve network quality.
However, sparsity also introduces irregularity and extra com-
plexity in data processing, which make the accelerator design
challenging. This work presents the design and implementation
of a highly flexible sparse DNN inference accelerator on FPGA.
Our proposed inference engine can be easily configured to be
used in both mobile computing and high-performance computing
scenarios. Evaluation shows our proposed inference engine effec-
tively accelerates sparse DNNs and outperforms CPU solution by
up to 4.7× in terms of energy efficiency.

Index Terms—Deep learning, Sparse DNN, Graphs, FPGA

I. INTRODUCTION

Recent years have witnessed the success of deep learning
in many domains, including computer vision, natural language
processing, medical care, autonomous driving and so on [1]
[2]. The extraordinary high accuracy of deep learning based
approaches is made possible by performing inference using
pre-trained deep neural network (DNN) models, which have
very high computation and memory space demands. This
complexity presents a significant challenge to adopting DNNs
for many real-world applications, especially edge-computing
scenarios, which have stringent power and latency require-
ments for computation. Researchers have invested significant
effort in making efficient low-computational-cost DNN based
systems possible. The research efforts mainly fall into three
aspects: designing light-weight DNNs, reducing the amount
of computation in DNN without sacrificing accuracy, and
accelerating DNNs with customized hardware.

Recent research reveals that many parameters in deep neural
networks are redundant and can be pruned away. Parameter
pruning reduces the number of parameters and the amount
of computation; after parameter pruning, the parameters in
DNN layers become sparse. However, sparsity in DNN lay-
ers also introduces irregularity and extra complexity from
sparse data formats and scheduling computation workload.
It is challenging for the processors and accelerators to han-
dle the irregularity and extra complexity which may lead
to non-negligible overhead in execution time. The overhead
diminishes the benefits from sparsity and may even result in
worse performance compared to non-sparse approaches if not
handled properly.

As deep learning conquers more and more complicated
cognitive computing tasks, the size and complexity of DNN
architectures explodes. Practitioners realize that it is getting

harder and harder to achieve performance and power efficiency
targets for deep learning systems with CPU and GPU, and
specialized deep learning accelerators are needed. Many deep
learning accelerators have been proposed and they have all
kinds of optimization objectives [3] [4]. Adoption of special-
ized deep learning accelerators has made many challenging
application scenarios possible, including intelligent wearable
devices, real-time high-definition video processing systems,
etc. FPGAs have been one of the ideal platforms for DNN
acceleration as FPGAs provide the combination of low latency,
high energy efficiency, and high reconfigurability, which make
FPGAs adaptable to many application scenarios.

In this work, we design and build a configurable sparse
DNN inference engine on an FPGA that accelerates the
inference of sparse DNNs. We target very deep sparse DNNs
that can be used as the backbone network for future complex
cognitive tasks. These DNNs have many layers and there are
many neurons inside a layer. Our proposed inference engine
can be reconfigured and adopted in different FPGA platforms,
depending on the available hardware resources and application
requirements.

The contribution of this work can be summarized as follows:
• We design and build a configurable sparse DNN inference

engine that is highly flexible and capable of processing
different sizes of sparse DNNs.

• We propose several design optimization techniques for
sparse DNN inference that are general enough to poten-
tially benefit future works on sparse DNN acceleration.

• We model and analyze the computation of sparse DNNs,
and we show how the accelerator design can be parame-
terized and how the accelerator design space looks like.

The rest of this paper is organized as follows. Section II
provides background information on sparse DNNs and FPGA
accelerators. Section III discusses our proposed accelerator de-
sign optimization techniques. Section IV presents the details of
our proposed sparse DNN inference engine. Section V shows
our experiment setups and results. Section VI reviews the
recent works on similar areas. Finally, Section VII concludes
the whole paper.

II. BACKGROUND

A. Sparse Deep Neural Networks

In this work, we focus on feedforward deep neural networks
that consist of fully connected layers. Note that our formula-
tion below for fully connected layers can also be extended for
sparse convolution neural networks (CNNs), since convolution

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

can be reduced to matrix multiplication operations. Motivated
by the Sparse DNN Graph Challenge [5], we consider a DNN
with L layers. Assume each layer in the DNN has M neurons,
i.e. the dimension of the input and output feature vectors of
each layer is M .

Let yl−1 = (yl−1,1, yl−1,2, . . . , yl−1,M) be a single input
sample to the l-th layer, and yl be the corresponding output
from the l-th layer. y0 is the input feature vector to the neural
network, e.g. y0 can be one input image. There can be N
input samples, and these N input samples can be stacked as
input matrix Y0 = (y

(1)
0 , y

(2)
0 , . . . , y

(N)
0)>, where y

(i)
0 is a row

vector and is the i-th input sample to the network. Similarly,
the input and output of the l-th layer with multiple samples can
be represented as matrices Yl−1 and Yl respectively. Feature
matrices Y’s are N ×M matrices.

The computation of the l-th layer can be formulated as

Yl = h(Yl−1Wl + bl), 1 ≤ l ≤ L (1)

where h(·) is the ReLU function h(x) = max(0, x). Wl is a
M ×M matrix whose element Wl(i, j) at i-th row and j-th
column represents the weight of the connection from the i-th
input neuron to the j-th output neuron. bl is the bias vector of
dimension M .
Wl and bl (1 ≤ l ≤ L) are the parameters of the DNN

which are determined by DNN training. y0 is the input feature
vector to the neural network. After DNN weight pruning,
W’s become sparse matrices. In some application, y0 is also
sparse. For example, in the hand-written digit recognition task
(MNIST dataset), only a small subset of image pixels are black
(“1”) and the rest are white (“0”). In the problem setting of
this work, all W’s and y0 are sparse.

B. FPGA Accelerators

FPGAs have been used in many application scenarios such
as Internet-of-Things (IoT), wearable devices, autonomous
driving, cloud computing, and scientific computing. Many
different applications benefit from FPGA’s low processing
latency and high energy efficiency. Programming FPGAs has
been a big challenge for decades, which prevents FPGA from
being rapidly deployed and adopted in more domains. High-
level synthesis (HLS) tools have greatly improved the produc-
tivity of FPGA designers. The C/C++/OpenCL to hardware
description language (HDL) design flow enabled by HLS tools
makes FPGA more accessible for designers.

III. DESIGN OPTIMIZATIONS

This section presents the optimizations used in our sparse
DNN accelerator. In this work, we use the test sparse networks
provided by Graph Challenge [5]. The sparse DNN has 120
layers, each of which contains 1024 neurons. The optimiza-
tion techniques presented here can be easily generalized to
accelerate any sparse DNN.

A. Dense Feature Vectors and Sparse Parameters

As mentioned in Section II-A, both input image and DNN
parameters are sparse. The input files of images and parame-
ters are also in sparse format. The input files contains all the
edges between neurons that have weights larger than 0. There-
fore, the multiplication in Equation (1) is the multiplication of
two sparse matrices, and one straightforward design would be
implementing multiplication of two sparse matrices directly.
In this way, the dot product of a sparse row vector and sparse
column vector requires computing the set intersection of their
indices. Since these sets are typically small (less than 1024
elements) , and the resource complexity of parallelizing the
intersection is not trivial, the sequential comparison algorithm
will be the most straightforward algorithm. Sequential com-
parison requires O(m+ n) comparisons, where m and n are
the number of non-zero elements in two vectors respectively.

However, we observe that treating both Y and W matrices
sparse may not be optimal. In practice, the number of non-
zero elements in the column vectors in the weight matrices
are typically constrained. In the test data used in this work,
the number of non-zero elements in each column of weight
matrices W’s is less than or equal to 32 (in 1024 neurons
case). However, the sparsity of feature maps varies a lot. The
number of non-zero elements in the row vectors in feature
maps can vary from 0 to 1024 (in 1024 neurons case).

In this work, we treat the feature maps as dense matrices and
the DNN parameters as sparse ones. In this way, the storage
of DNN parameters is compact while access to parameter
and feature maps is more efficient. With this dense-feature
/ sparse-parameter scheme, the multiplication of input feature
vector and a column (weights of incoming edges to a neuron)
in the parameter matrix can be done in a way shown in
Listing 1. In Listing 1, param is the sparse representation of
a column in parameter matrix, an array of pairs of indices and
weights. The code iterates through param array, uses index
to retrieve the feature vector fvec element and multiplies
it with the corresponding weight. With this approach, there
are param.size() random accesses into the feature vector
array fvec. Note that the difference from regular dense matrix
multiplication is that here the feature vector is randomly
accessed as parameter arrays are sparse. This random access
pattern is not friendly to memory access efficiency.

float sum = 0.0;
for(int i = 0; i < param.size(); i++) {

sum += fvec[param[i].idx] * param[i].weight;
}

Listing 1. Feature vector fvec multiplied with a column param of the
parameter matrix

B. Grid Representation and Data Dependencies

In order to better illustrate the data dependencies in the
sparse DNN computation, we represent the computation of
sparse DNN as a 2D grid, as shown in Fig. 1. Each row
in the grid represents the computation on one input sample
(one image). The i-th row represents the processing of the
i-th input sample. The number of rows equals the number

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

…

…

… … … … … … … … … … … …

…

Timage images

Number of layers: Tlayer

Buffer A

Buffer B

Tile

❶

❷

Fig. 1. Tiling scheme

of input test images. Each column of the 2D grid represents
the computation of a specific layer in the sparse DNN on all
input samples’ feature maps. The j-th column in the 2D grid
represents the computation of all input samples’ feature maps
going through the j-th layer. The grid point at the i-th row and
the j-th column represents the computation of the i-th input
samples’ feature maps goes through the j-th layer in the DNN.
Each grid point includes sparse vector-matrix multiplication
(Fig. 2), bias, and non-linear operations. Using the previous
notation of M neurons, inside each grid point, the dimensions
of vector and matrix in the sparse vector-matrix multiplication
are M and M ×M respectively.

The computation of rows of the 2D grid is independent from
each other, since there is no data dependency between input
samples. The computation of columns has dependency on the
computation of the previous column. This is because the input
to the next layer is the output from the previous layer. Within
each grid point, the computation of inner products of vector
and M columns of matrix is independent from each other.

C. Ping-Pong Buffering

In this work, we use very deep DNNs to test the per-
formance of our system. The number of layers in the test
DNNs varies from 120 to 1920. In order to keep track of
the activations in this many layers, we use ping-pong buffers
to store the input and the output feature maps. For example,
when computing layer 2i, buffer buf_a is used to store the
input feature maps, while buffer buf_b is used to store the
output feature maps. When processing layer 2i+ 1, the roles
of buffers buf_a and buf_b switch, the output feature map
from layer 2i in buffer buf_b is read and processed and the
output is stored back into buffer buf_a.

Fig. 1 uses blue and green color to mark the usage of ping-
pong buffers. The feature maps in neighbor layers are stored
in two buffers. With this design, we only need two buffers
to store the intermediate feature maps no matter how many
layers there are. Note that we are not sacrificing performance
here as there are intrinsic data dependencies between layers
and layers need to be processed sequentially.

D. Multi-Level Tiling

The on-chip memory resource in FPGA is limited. The size
of input samples and DNN parameters are much larger than

the capacity of FPGA on-chip memory. Tiling is necessary to
reuse on-chip memory space and improve the processing effi-
ciency. In this work, we use tiling along multiple dimensions
at multiple levels. The combination of tiling along multiple
dimensions at multiple levels enables high flexibility of the
design. Given input sizes and the amount of resources on
the target FPGA platform, this tiled design can be easily
configured for best performance by changing tile sizes.

In our design, tiling happens along three different dimen-
sions and levels: 1 across input samples (input batch); 2
across layers (inter-layer); 3 within a layer, across neurons
(intra-layer).

The first type of tiling happens across input samples. Fig. 1
and Fig. 2 illustrate this type of tiling (see 1 in the figures).
Multiple input samples (Timage samples) are grouped into a
tile and processed together. The input samples within a tile
share the same copy of DNN parameters. Each load of DNN
parameters is reused for Timage times. Therefore, the larger tile
size Timage is, the more times DNN parameters are reused. At
the same time, larger Timage requires more on-chip memory to
store images and parameters.

The second type of tiling is done across DNN layers. 2 in
Fig. 1 shows this type of tiling. Tlayer layers form a tile. The
parameters in a tile are loaded into on-chip BRAM all at once,
and the input samples go through each layer in the tile. The
processing within a tile is fully pipelined. That means larger
Tlayer requires more intermediate buffers. The output of the
tile is the output feature vector from the last layer in the tile.
Depending on the tile execution order, the output of the tile
may need to be written back to the global DRAM on the FPGA
board if image tiles are iterated first. Let L be the number
of layers in DNN, then with tile size of Tlayer, there will be
bL/Tlayerc feature vectors being written back to the on-board
DRAM in that case. The larger Tlayer is, the fewer write-backs
there are, while more on-chip memory are required to store
parameters.

The third type of tiling happens at a different level than the
previous two types of tiling. This type of tiling happens across
neurons within a layer. 3 in Fig. 2 illustrates this type of tiling.
Multiple columns (neurons) in a DNN layer are grouped into
a tile and multiply with input sample to get the partial sums
of corresponding columns. As discussed before, these partial
sums are independent from each other and can be done in
parallel. The feature vector is duplicated and stored in Tneuron
different BRAMs so that they can be accessed in parallel.
In our design, each of these partial sums is calculated by a
separate sparse vector dot product unit.

E. Dynamic Workload Balancing

In our sparse DNN inference engine, there are multiple
accelerator instances. Each accelerator can be controlled in-
dependently. The host program assigns packs of images to
these accelerators. We use a dynamic workload assignment
algorithm (Algorithm 1) in the host CPU program to balance
the workloads of the accelerators [6]. The input samples
are partitioned into small packs and used as the minimal

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Number of neurons, M

Feature vector dimension

Tile size Tneuron

Partial sums,
tile size Tneuron

Input Feature Vectors
(dense)

Weights
(sparse)

Output Feature Vectors
(dense)

…
…

…
…

B
at

ch
 s

iz
e
T i

m
ag

e

…
…

…
…

❶

❸

Fig. 2. Sparse vector-matrix multiplication

Algorithm 1 Dynamic Workload Assignment
Input: Number of input samples N , pack size S, accelerator

pool P = {P[0], ..., P[m-1]}.
1: curr_img ← 0, acc_ptr ← 0
2: size ← MIN(S,N − curr_img)
3: while curr_img < N do
4: if P[acc_ptr].ISIDLE() then
5: ASSIGN(curr_img, size, P[acc_ptr])
6: curr_img ← curr_img + size
7: else if P[acc_ptr].ISDONE() then
8: COLLECTRESULTS(P[acc_ptr])
9: ASSIGN(curr_img, size, P[acc_ptr])

10: curr_img ← curr_img+size
11: end if
12: acc_ptr ← (acc_ptr+1)%m
13: end while

assignment unit. In Algorithm 1, one pack contains S input
samples, e.g. S = 32. The high-level idea of dynamic
workload balancing is that the host program checks the status
of each accelerator and assigns a pack of input samples to
the idle accelerator. There are two cases where the accelerator
can accept new workload assignment. The first case is that the
accelerator has finished the previous assignments, has results
ready, and is ready to accept new ones. Line 7 in Algorithm 1
deals with this case. In this case, the host program collects the
results returned from the accelerator, and assigns the current
pack to this accelerator. The second case is that the accelerator
is idle and doesn’t have results to report (Line 4). In this case,
the host program simply assigns a pack of input samples to
this accelerator. In practice, we choose S = 32, and achieve
nearly perfect workload balancing of accelerators.

IV. SPARSE DNN ACCELERATOR ARCHITECTURE

In this section, we present the hardware architecture of
our sparse DNN inference engine, which incorporates all the
optimizations discussed in Section III.

Fig. 3 depicts the high-level view of sparse DNN inference
engine in an FPGA chip and the structure of a sparse DNN
accelerator. Our sparse DNN inference engine consists of a
pool of accelerators. Each of these accelerators can be con-
trolled independently by the host CPU and they don’t require
synchronization during the processing. Each accelerator can

FPGA Chip

… …

… …

buf_b_1

buf_b_2

buf_b_Tneuron

Sparse
dotprod

Sparse
dotprod

Sparse
dotprod

…

buf_a_1

buf_a_2

buf_a_Tneuron

Sparse DNN Accelerator

params …

Acc

Fig. 3. Sparse DNN accelerator architecture

process any number of input samples and any number of DNN
layers.

Our inference engine design can be adopted in both
power-constrained edge computing scenarios as well as high-
performance cloud computing scenarios. The number of accel-
erators in the engine is determined by the hardware resource in
the FPGA chip. Each accelerator is light-weight but fully ca-
pable of running sparse DNN inference. In low-power FPGAs,
we can instantiate one single accelerator and achieve low-
power high-efficiency processing, while on high-performance
FPGAs, many accelerators can be instantiated to achieve high
processing throughput.

As illustrated in Fig. 3, inside each accelerator, multiple
pairs of ping-pong buffers (group A buf_a_i’s and group B
buf_b_i’s in Fig. 3) and sparse vector dot product processing
elements (PEs) are instantiated.

Each PE processes the vector dot product of the same input
feature vector with one different column in the parameter
matrix. These PEs calculate the partial sums synchronously in
a single instruction multiple data (SIMD) manner. The buffers
in the accelerator are instantiated with block RAMs (BRAMs)
in FPGA. Note that each of these BRAMs has two read ports
and can provide two data point per clock cycle. In order to
fully utilize the parallelism between columns in the parameter
matrix, one input feature vector is actually replicated into
Tneuron separate buffers, together comprising buffer group A.
In this way, Tneuron buffers can all be accessed and processed
at the same time. The outputs from sparse vector dot product
engines are all stored into the same buffer, buf_b_1. After
processing of one layer, the values in buf_b_1 are copied
into all the other buffers in group B. Then, the weights of the
next layer are loaded into parameter buffers (params in Fig.
3) and group B buffers are used as inputs to sparse vector dot
product engines. The outputs are stored into the same buffer
buf_a_1. Again, before processing the next layer, the values
in buf_a_1 are copied to the other buffers in group A.

V. EXPERIMENTS

A. Test Platform and Dataset

In this work, we use the Xilinx VC709 board [7] as the
target FPGA platform. The basic information about our test

TABLE I
TEST PLATFORM INFORMATION

FPGA Board Xilinx Virtex-7 FPGA VC709 Board
FPGA Chip Xilinx XC7VX690TFFG1761-2 FPGA
On-Board Memory 2×4GB DDR3 (up to 933MHz)
On-Chip Memory (Kb) 52,920
On-Chip DSP Slices 3,600
On-Chip Logic Cells 693,120
Host-FPGA Interconnect PCIe Gen3 up to 8 lanes
Host CPU Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz
Host Memory 24 GB DDR3 (800MHz)
Operating System Ubuntu 14.04 LTS
Host Compiler g++ 4.8.4

system is listed in Table I. We use the synthetic sparse DNN
dataset from Graph Challenge [8] to evaluate our solution. The
information on the synthetic dataset we used in this work is the
sparse DNN with 120 layers. Each layer has 1024 neurons. The
input sample dimension is 1024 as well. The total parameter
size is 176MB.

The input data are stored in text files. Each line in the
text file follows the graph edge representation of (node_a,
node_b, weight). Our host code reads the input text
files and stored the DNN parameters in Compressed Column
Storage (CCS) format. The input images are stored in the
dense format.

B. Design Parameters

In our final design targeting Xilinx VC709 board, we choose
the following design parameters to maximize the performance
of the system. Please note that the choice of these design
parameters highly depends on the target FPGA platform and
the design goals.
• Number of accelerators in FPGA P = 15. We put as

many accelerators as possible onto the FPGA chip and
P = 15 is the maximum possible number of accelerators
to be integrated into the target Virtex-7 FPGA. Placing
more accelerators will lead to severe place and route
congestion and timing problem.

• Tiling across input samples Timage = 1. We choose
Timage = 1 and optimize the design for Timage = 1 case so
that our design can have optimal latency processing one
single image. Although choosing Timage > 1 can increase
the parameter reuse, Timage > 1 also requires larger buffer
sizes to store intermediate results. Choosing Timage = 1
minimizes the pressure on the local on-chip memory.

• Tiling across layers Tlayer = 2. We load the parameters for
two layers at a time to accommodate the processing with
ping-pong buffer. We choose to iterate through the layers
and not reusing the parameters for images. This way, only
the final classification result (one single integer per input
sample) needs to be written back, which minimizes the
amount of intermediate results being written back. This
reduces the pressure on DRAM bandwidth and improves
the efficiency.

• Tiling across neurons Tneuron = 16. We create a script to
automatically generate synthesizable C code with various

TABLE II
FPGA RESOURCE UTILIZATION

Look-Up Tables 209,814 / 433,200 (48.43%)
Flip-Flop 232,720 / 866,400 (26.86%)
BRAM 815 / 1,470 (55.44%)
DSP 150 / 3,600 (4.17%)

Tneuron values and test the latency of the design. It turns
out that Tneuron = 16 is the optimal setting under the
timing constraint of 4ns per clock cycle (250 MHz).
Smaller Tneuron doesn’t fully exploits the parallelism
within a DNN layer, while larger Tneuron introduces larger
overhead in extra buffering space.

• Workload assignment pack size S = 32. We evaluate the
accelerator performance with different S values, such as
32, 64, and 256. The differences in performance with
these sizes are not significant for the current setting.

C. Evaluation

With the design parameters listed in Section V-B, the
resource utilization of the inference engine on VC709 board
is listed in Table II. Note that different design parameters
will lead to different FPGA resource utilization ratios. As
we explained in Section V-B, we conservatively uses around
50% of FPGA resources so that the frequency and timing
quality of the synthesized circuit can be guaranteed. The power
consumption of this design is around 12W, which is estimated
by the synthesis flow in Xilinx Vivado.

To fully evaluate the benefits of our proposed techniques,
we measure the performance of two FPGA designs, one
(“Optimized”) is with all optimizations described in Section
III, the other (“Basic”) is a basic FPGA design without tiling.
Figure 4 and Table III show the performance of two designs
with various number of accelerators, as well as the efficiency
improvement from the optimized FPGA solution compared to
the CPU solution. As shown in the figure, the optimized design
can achieve more than five times speedup compared to the
basic design. In our evaluation, the best number of accelerators
for the optimized design is around 7. For smaller number
of accelerators, adding more accelerators exploits parallelism
in processing images and therefore improves performance.
However, when there are enough accelerators, FPGA on-board
memory bandwidth becomes the bottleneck of the whole sys-
tem. Even though adding more accelerators increases compu-
tational capabilities, it also increases memory access pressure.
At some point, memory bandwidth saturates and adding more
accelerators no longer improves system performance.

We evaluated the baseline MATLAB code provided by
Graph Challenge on a high-performance server with four
AMD Opteron 6272 Processors (4× 16 cores). The execution
time of the MATLAB code is 124.07 seconds, and its power
consumption is estimated to be 114W [9]. Although the
performance of multi-core CPU is around two times faster than
the FPGA solution, the power efficiency of our design is up to
4.7× higher than the multi-core solution. Here are a few notes
to help understand the difference in performance between our

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

TABLE III
SPARSE DNN ACCELERATOR PERFORMANCE

P Basic (s) Optimized (s) Speedup Efficiency over CPU
1 4618.45 906.81 5.09 1.30
2 2313.04 474.29 4.88 2.49
4 1159.95 310.14 3.74 3.80
6 773.26 254.76 3.03 4.63
7 662.16 251.31 2.63 4.69
8 579.26 269.89 2.14 4.37
12 386.85 489.37 0.79 2.41
15 310.53 484.23 0.64 2.43

solution and the MATLAB based multiple CPU solution. First,
the MATLAB implementation uses the sparse BLAS libraries
in MATLAB, which is highly optimized for sparse matrix
operations. Therefore the MATLAB version is not a trivial
reference solution. Second, the target platform has much more
hardware resources and higher computation capability. We are
comparing our single FPGA solution against a solution based
on 64-core server grade high-performance CPUs here. Third,
the memory access path from host memory to FPGA device
memory has lower peak data transfer bandwidth compared
the CPU. In our design, in order to reduce the complexity
of FPGA place and route and create designs with good timing
properties, we only uses one single PCIe lane (up to 8 lanes are
allowed in hardware) and only one host-device channel (up to
4 channels are allowed in hardware). Based on our experiment
results, using more PCIe lanes or host-device channels will
result in bad circuit timing and the design frequency will be
low. This narrow CPU-FPGA interface becomes a bottleneck.
The performance of our accelerator solution can be further
improved with better optimized CPU-FPGA inference. This
will be done as a future work.

Given enough DRAM bandwidth, our solution can be easily
scaled to larger FPGAs with more accelerators or even multi-
ple FPGAs, as our accelerators can operate independently on
different set of input samples. This way the parallelism in input
samples and neurons in the layers can be further exploited, as
we discussed in Section III. With more accelerator instances
and multiple FPGAs, our solution should be able to outperform
the multi-core CPU solution even in terms of execution time.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 6 7 8 12 15

Ef
fi

ci
e

n
cy

 Im
p

ro
ve

m
e

n
t

o
ve

r
C

P
U

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Number of Accelerators

FPGA Basic

FPGA Optimized

Efficiency over CPU

Fig. 4. Sparse DNN accelerator performance

VI. RELATED WORKS

In this work, we focus on hardware acceleration of sparse
deep neural networks (DNNs). Converting dense deep neural

networks into sparse ones is out of the scope of this work. The
computation in sparse DNNs we focus on is essentially sparse
vector-matrix multiplication with non-linear activation func-
tions. There are several works on acceleration of sparse matrix
vector multiplication. Fowers et al. [10] proposed an FPGA
design for sparse matrix-vector multiplication. The accelerator
is designed in RTL code. The design consumes 25W and
achieve 2.6× and 2.3× higher energy efficiencies than CPU
and GPU. The performance of the design is around two thirds
of CPU performance and one third of GPU performance. This
work uses Compressed Interleaved Sparse Row (CISR) matrix
encoding which enables simultaneous multiply-accumulate
operations on multiple rows of the matrix. The problem solved
here is similar to our work, the major difference is that our
work focuses on sparse DNNs specifically instead of sparse
matrix vector multiplication. Also, our sparse DNN inference
engine is parameterized and is capable of exploiting various
types of parallelism and data reuse opportunities.

Giefers et al. [11] did a thorough comparison of the energy
efficiency of sparse matrix multiplication on CPU, Xeon Phi
and FPGAs, in the context of heterogeneous systems. The
FPGA platform in this work is Nallatech 385N FPGA board,
which contains an Altera Stratix V FPGA. The design is
done with OpenCL SDK for FPGA. The evaluation results
show that FPGA is remarkably efficient. This work focuses on
energy efficiency comparison across platforms, and the FPGA
design uses the general OpenCL code which may not be best
optimized for FPGA and the design flow.

Besides, there are several recent works focus on FPGA
acceleration of sparse convolutional neural networks (CNN)
[12] [13] and sparse long short-term memory (LSTM) [14].
These works accelerate the CNNs and LSTMs while this work
focus on very deep fully connected networks. The computation
inside sparse CNN and LSTM have similar memory random
access patterns as sparse matrix vector multiplication. How-
ever, sparse CNNs and LSTMs have unique data dependency
patterns, therefore the high-level data access and computation
patterns in these works are different from this work. Besides,
this work targets very deep and wide networks which are
generally larger than the networks used in current applications.

VII. CONCLUSION

In this work, we proposed and built a configurable sparse
DNN inference engine. The proposed inference engine is
parameterized and it can be configured to have different sizes
and different processing capabilities. The inference engine can
be adopted in both edge computing and high-performance
computing scenarios. We also modeled and analyzed the com-
putation of sparse DNN inference, parameterized sparse DNN
hardware design, and presented the design space of the sparse
DNN accelerators. The proposed design was evaluated on
Xilinx VC709 FPGA board. Evaluation results show that the
proposed design achieve up to 4.7× better energy efficiency
compared to CPU.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

ACKNOWLEDGMENT

This work is supported by IBM-ILLINOIS Center for
Cognitive Computing Systems Research (C3SR) - a research
collaboration as part of the IBM AI Horizons Network.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[3] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang,
Z. Cheng, K. Rupnow, and D. Chen, “High-performance video content
recognition with long-term recurrent convolutional network for FPGA,”
in 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), Sep. 2017, pp. 1–4.

[4] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m.
Hwu, and D. Chen, “FPGA/DNN Co-Design: An efficient design
methodology for IoT intelligence on the edge,” in Proceedings of the
56th Annual Design Automation Conference 2019, ser. DAC ’19. New
York, NY, USA: ACM, 2019, pp. 206:1–206:6. [Online]. Available:
http://doi.acm.org/10.1145/3316781.3317829

[5] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robinett,
and S. Samsi, “Sparse deep neural network graph challenge,” 2019.
[Online]. Available: https://graphchallenge.mit.edu/challenges

[6] S. Huang, L.-W. Chang, I. El Hajj, S. Garcia de Gonzalo, J. Gómez-
Luna, S. R. Chalamalasetti, M. El-Hadedy, D. Milojicic, O. Mutlu,
D. Chen, and W.-m. Hwu, “Analysis and Modeling of Collaborative
Execution Strategies for Heterogeneous CPU-FPGA Architectures,” in
Proceedings of the 2019 ACM/SPEC International Conference on Per-
formance Engineering, ser. ICPE ’19. New York, NY, USA: ACM,
2019, pp. 79–90.

[7] “Xilinx virtex-7 fpga vc709 connectivity kit,”
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html.

[8] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robinett,
and S. Samsi, “Sparse deep neural network graph challenge,” 2019.

[9] “Bulldozer for servers: Testing amd’s ”interlagos” opteron 6200 se-
ries,” https://www.anandtech.com/show/5058/amds-opteron-interlagos-
6200/8.

[10] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” in 2014 IEEE 22nd Annual International Symposium
on Field-Programmable Custom Computing Machines, May 2014, pp.
36–43.

[11] H. Giefers, P. Staar, C. Bekas, and C. Hagleitner, “Analyzing the energy-
efficiency of sparse matrix multiplication on heterogeneous systems: A
comparative study of gpu, xeon phi and fpga,” in 2016 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), April 2016, pp. 46–56.

[12] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An
efficient hardware accelerator for sparse convolutional neural networks
on fpgas,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2019, pp.
17–25.

[13] J. Chang, K. Kang, and S. Kang, “SDCNN: An efficient sparse de-
convolutional neural network accelerator on FPGA,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2019,
pp. 968–971.

[14] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu,
M. Wu, and L. Zhang, “Efficient and effective sparse LSTM on fpga
with bank-balanced sparsity,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’19. New York, NY, USA: ACM, 2019, pp. 63–72. [Online].
Available: http://doi.acm.org/10.1145/3289602.3293898

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

