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Abstract—This work presents an update to the triangle-
counting portion of the subgraph isomorphism static graph
challenge. This work is motivated by a desire to understand
the impact of CUDA unified memory on the triangle-counting
problem. First, CUDA unified memory is used to overlap reading
large graph data from disk with graph data structures in
GPU memory. Second, we use CUDA unified memory hints
to solve multi-GPU performance scaling challenges present in
our last submission. Finally, we improve the single-GPU kernel
performance from our past submission by introducing a work-
stealing dynamic algorithm GPU kernel with persistent threads,
which makes performance adaptive for large graphs without
requiring a graph analysis phase.

Index Terms—GPU, graph algorithms, triangle counting

I. INTRODUCTION

Triangles are a simple non-trivial structure of many graphs,
and are used as foundational elements for graph analyses
and transformations. The widespread adoption of GPUs in
commodity, cloud-computing, and specialized supercomputing
systems, provides substantial motivation for accelerating graph
operations on GPUs, whether for stand-alone operations or as
part of an extended pipeline. Of particular interest is whether
large-scale graph operations can be effectively parallelized to
multiple tightly-connected GPUs.

A key challenge of using GPUs for large-scale graph opera-
tions is the low compute intensity of those operations and the
relatively low bandwidth between GPU memory and system
memory. At the same time, GPU system integrators like IBM
have developed and released programmer-friendly and tightly-
integrated heterogeneous CPU/GPU systems, where GPUs
have full access to expansive host memory and intercon-
nects that have an order of magnitude higher bandwidth than
previously available. In previous submissions, we presented
our collaborative CPU/GPU approach to triangle counting
and k-truss decomposition based on CUDA’s zero-copy and
unified memory for optimizations to our static graph challenge
algorithms.

In this work, we examine the impact of programmer-friendly
and tightly-integrated GPU programming APIs on triangle
counting. We make the following contributions:

1) Triangle counting based on persistent-kernel dynamic
algorithm selection;

2) Evaluation of performance impact of using unified mem-
ory for in-GPU-memory triangle counting;

3) Evaluation of performance impact of using unified mem-
ory for computation support, implicit graph partitioning,
and multi-GPU scaling;

4) Unified memory for overlap of graph construction in
GPU memory with disk I/O.

II. DESIGN

The algorithm operates on an unweighted directed acyclic
graph G = (E, V ), where each edge E is from a source
vertex Vs to a destination vertex Vd. Each triangle is uniquely
associated with a particular “base” edge. Each edge in the
graph may be the base edge of zero or more triangles, and
the triangle count for the graph is the sum of the triangle
count of each base edge. Most datasets are provided by the
GraphChallenge in a sorted edge-list file format. Similar to our
previous submission, we follow an edge-oriented approach.

A. Graph Storage

In previous submissions, we used a hybrid “COO+CSR”
(coordinate + compressed-sparse-row) format, where the CSR
colInd array is paired with an equal-length rowInd array
containing the non-zero row index. In a traditional CSR, each
parallel task is typically assigned to a row, and then while
processing that row additional parallelism may optionally be
leveraged to access each entry in that row. Parallel tasks are
not directly mapped to row entries, as the length of each row
is not known until the CSR is accessed. The inclusion of the
rowInd array makes it straightforward to parallelize across
edges instead of rows in the CSR, as each parallel task can
look up the source vertex of an edge without traversing the
rowPtr array. We refer to the rowPtr, rowInd, and colInd
arrays in the algorithms in Section II-D.

B. CUDA Unified Memory and Hints

CUDA unified memory provides a single coherent memory
image available to all participating devices (in this case,
CPUs and GPUs). At page granularity data is migrated to the
memory of the device that has used it most recently. Since
data access patterns for graphs are data-dependant, we hope
to use this fine-grained on-demand data transfer system as a
platform to implicitly partition graph data across GPUs and
prevent unnecessary data transfers.
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Figure 1. Speedup achieved by overlapping disk I/O with COO+CSR
construction, over first reading the entire edge list and then constructing the
COO+CSR representation.

Unified memory comes with a large performance cost of
handling page faults as GPU threads access non-local pages.
When a thread makes an access, the warp is stalled while the
page is transferred to the demanding device and the device’s
page table is updated. Furthermore, if multiple devices all
access the same page, the page may thrash between devices,
bringing forward process to a near stand-still. A programmer
with some knowledge of application data-access patterns can
use hints to the system to affect the behavior of the page
migration and reduce the performance costs.

• cudaMemAdviseSetReadMostly: a memory region is
marked as read-mostly, and devices which read from this
region get a read-only copy of the page. This prevents
multiple devices that only read data from thrashing.

• cudaMemPrefetchAsync: This prefetches a memory re-
gion to a device, preventing the device from stalling while
during a demand page migration, as the page will already
be on the device.

C. COO+CSR Construction and Disk I/O Overlap

Thanks to unified memory, we are able to overlap CSR
construction in the GPU address with the disk I/O for reading
the data. Two threads are synchronized by a shared double-
buffer, which one thread fills from the edge list file and the
other consumes to create the COO+CSR in CUDA unified
memory. As such total_time includes the cost of disk
I/O; gpu_time does not. Figure 1 shows the speedup of
overlapping these operations, compared with disk I/O alone
followed by CSR construction. Both operations take approx-
imately the same amount of time, leading to nearly a 2x
speedup. For these measurements, the disk I/O is accelerated
by the edge list file contents being in the operating system
disk cache, as well as being in a binary format.

D. Triangle-Counting Kernel

We continue to approach the triangle-counting problem in
terms of a per-edge count of common elements between source
and destination node neighbor lists. In our previous submis-
sion, we used a single algorithm regardless of the incoming
graph. Like many submissions, we continue to take advantage
of the observation that converting the undirected graph into
a DAG (directed acyclic graph) can cut the triangle counting
work in half. By directing edges along a total ordering of
nodes, the graph can be converted to a DAG. In this work, we
direct all edges from lower to higher vertex id. Other works

take a different approach, such as [1], [2] who order by degree.
We did not take this approach, as we feel it requires a pass
over the entire graph before the orientation of each edge can
be known.

Algorithm 1 Two-pointer intersection count
Input: a, aSz, b, bSz: sorted arrays a, b and sizes
Output: c: number of common elements in a and b

1: procedure THSEQCNT(a, aSz, b, bSz)
2: c = 0
3: ap = a; loadA = true
4: bp = b; loadB = true
5: while ap < a + aSz and bp < b + bSz do
6: if loadA then
7: aVal = *ap; loadA = false
8: end if
9: if loadB then

10: bVal = *bp; loadB = false
11: end if
12: if aVal == bVal then
13: c += 1
14: ap += 1; loadA = true
15: bp += 1; loadB = true
16: else if aVal < bVal then
17: ap += 1; loadA = true
18: else
19: bp += 1; loadB = true
20: end if
21: end while
22: return c
23: end procedure

1) Two-Pointer Intersection Count: We continue to use a
two-pointer intersection count. This approach is similar to
the ones described by other finalists. Algorithm 1 shows our
current two-pointer intersection count implementation. The
expected number of accesses for each thread is aSz + bSz,
where aSz = aEnd − aBegin and bSz = bEnd − bBegin.
Compared to our submission last year, this implementation
prevents generating a load instruction when a pointer has not
moved, and fixes an out-of-bounds access bug.

2) Binary Search Intersection Count: In addition to the lin-
ear intersection count, we considered a binary-search approach
similar to 2017 finalist/2018 champion Hu[1] and 2018 finalist
Fox[3], who motivate it in more detail. Each value in one array
may be sought in the other array using a binary search. To
summarize, the expected number of global memory accesses
is cSz × log2(dSz), where cSz is the shorter of the two
arrays and dSz is the longer. When the lengths of the arrays
are severely mismatched, the binary search will require fewer
memory accesses than the two-pointer search. Furthermore,
every element of the shorter array can be sought in the longer
array in parallel. This yields good cache performance, as
adjacent threads’ accesses in the binary search will all be to
the same or similar locations.

E. Static Kernel

In our static kernels, we assign each thread to a single edge.
Each thread loads the source and destination vertex from the
rowInd and colInd arrays (the COO), then traverses the
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CSR part of the COO+CSR to determine which entries in the
colInd array correspond to the neighbor list of each vertex.

The number of common elements (triangles) between the
two neighbor lists is counted using the two-pointer sequential
intersection For the linear kernel, Algorithm 1is used for the
“linear” kernel.

The binary kernel uses a single thread, which searches for
values from the shorter neihbor list in the longer neighbor
list using a binary search. At the end of the kernel execution,
each thread block uses a CUB [4] BLOCKSUM to aggregate
the count into thread 0, which uses a single ATOMICADD to
contribute its final count to memory.

F. Dynamic Algorithm Selection

Fox et al. [3] presented a logarithmic radix binning ap-
proach, where different amounts of parallelism were provided
to different edges based on an estimate of their workload. Their
results showed that the performance overhead of the binning
was non-trivial, so we attempt to capture a similar idea without
the associated overhead.

Instead of providing a different amount of parallelism to
each edge, we apply a different intersection-count approach to
each edge based on the expected number of loads described in
Sections II-D1 and II-D2. This should give the benefit of fast
O(log2) search through very long rows, or a fast sequential
search through shorter rows.

Furthermore, instead of paying the price of binning edges
by expected workload ahead of time, we implement a work-
stealing approach at the granularity of 32-thread warps. In
our static kernels, where the grid size is determined by the
number of edges, a single long-running thread could prevent
an otherwise idle block from finishing and freeing resources
for other blocks to begin their work.

Instead of statically assigning threads to edges, we create
enough GPU warps to fully occupy the device, and then allow
these persistent warps to work-steal edges from each other un-
til the entire triangle count has been completed. Modern GPUs
still broadly follow the lockstep execution model for threads
in a warp, so any warp that gets stuck with a long-running
thread will still block the other threads in that warp from doing
useful work. However, the other warps in the block will be free
to claim additional edges to count. This is analogous to the
work-stealing runtime used by [5] except at the granularity
of edges instead of partitions. We choose groups of 32 edges
because if the two-pointer algorithm is selected, the 32 threads
in each warp can execute independently on those edges. If
the binary algorithm is selected, the warp can collaboratively
count triangles without synchronizing the entire block.

Algorithm 2 shows pseudocode for our implementation.
WARPBCAST is a function that transmits the first parameter
from the thread with the lane index of the second parameter to
every thread in the warp. WARPSUM similarly collaboratively
sums the values in the first parameter of every warp and returns
the result to the thread with the lane index of the second pa-
rameter. WARPBINCNT is a warp-collaborative binary search
algorithm, where each thread in the warp searches for an

Algorithm 2 Edge-oriented Dynamic Kernel
Input: sf: a tuning parameter for the selection heuristic
Input: ei: the starting edge index (0)
Output: c: the total count

1: lx = THREADIDX.X % 32 . lane in warp
2: thCnt = 0 . this thread’s count
3: while true do
4: if 0 then == lx
5: wi = ATOMICADD(ei, 32) . first edge in 32
6: end if
7: wi = WARPBCAST(wi, 0)
8: if wi > nnz + 32 then
9: break

10: end if
11: src = colInd[rowPtr[src]]
12: srcSz = colInd[rowPtr[src+1]] - src
13: dst = colInd[rowPtr[dst]]
14: dstSz = colInd[rowPtr[dst+1]] - dst
15: lCost = srcSz + dstSz
16: lcost = WARPSUM(lcost, 0)
17: lcost = WARPBCAST(lcost, 0)
18: if srcSz < dstSz then
19: bincost = sf × srcSz × log2(dstSz)
20: else
21: bincost = sf ×dstSz × log2(srcSz)
22: end if
23: bincost = WARPSUM(bincost, 0)
24: bincost = WARPBCAST(bincost, 0)
25: if lcost < bcost then
26: thCnt = THSEQCNT(src, srcSz, dst, dstSz)
27: else
28: for j = wi; j < iw + 32 and j < nnz; ++j do
29: eSrc = WARPBCAST(src, j - wi)
30: eSrcSz = WARPBCAST(srcSz, j - wi)
31: eDst = WARPBCAST(dst, j - wi)
32: eDstSz = WARPBCAST(dstSz, j - wi)
33: thCnt = WARPBINCNT(eSrc, eSrcSz, eDst, eDstSz)
34: end for
35: end if
36: end while
37: thCnt = BLOCKSUM(THCNT)
38: if thenthreadIdx.x == 0
39: ATOMICADD(c, thCnt)
40: end if

element of the shorter list in the longer list using a binary
search. In line 1, each thread computes its lane index within
the warp. Lines 4-7 lane 0 uses an atomic operation to work-
steal a group of 32 edges and broadcasts the starting edge
to every other warp in the group. Lines 8-10 terminates the
warp if no thread has a valid edge to work on. Lines 11-14
traverse the CSR data to get the offset and size of the source
and destination vertex neighbor lists. Lines 15-25 compute an
aggregate cost of using either the linear or binary intersection
algorithm for those 32 threads. The binary cost is scaled by a
user-tunable sf factor. The effects of that factor are explored
in Figure 2. Lines 26-36 use the threads in the warp to either
count triangles for all 32 edges in parallel with the sequential
approach, or collaboratively count triangles using the binary
search approach for one edge at a time. Finally, lines 38-41
do a collaborative summation of all of the triangles discovered
by this block and contribute them to the total count with an
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Figure 2. Performance of the dynamic selection kernel on the twenty
largest graphs with a varying scale factor in the cost heuristic. A larger scale
factor favors the two-pointer intersection algorithm over the binary intersection
algorithm.

Figure 3. Achieved TEPS of various kernel implementations on the twenty
graphs with the largest edge count.

ATOMICADD.

Figure 2 shows how the performance of the dynamic kernel
varies with the tunable scale factor. The larger the scale factor,
the more expensive the binary search is considered and the
more likely that the linear approach is selected for any group of
32 edges. We can see that some graphs greatly favor the linear
approach, particularly graphs where the average out degree is
low and the variance in the out degree is low. The internet
topology graphs performance drops sharply for the linear
method, because they feature several extremely populous rows,
with mostly empty rows. With the linear kernel, an entire
warp may be blocked for a long time while a single thread
works through the lists. When any binary search is allowed,
binary search into the long rows prevents the performance
degredataion. The graph500 family of graphs exhibits grad-
ually decreasing performance as the linear approach is favored.
This suggests the performance model is not quite able to
discriminate successfully in all cases. Based on these results,
we select a scale factor of 2 for the final evaluation.

Figure 3 shows the achieved kernel TEPS (traversed edges
per second, or edges divided by time), for the twenty largest
graphs in the GraphChallenge dataset (by edge count). In
most cases, the dynamic kernel matches the performance of
either the linear or binary approach alone, without having
to make a heuristic decision based on the graph properties
before counting begins. This style of approach is promising
for translating performance improvements to never-before-
seen graphs. Only in the case of the graph500 family does
the dynamic kernel not match the performance of either other
approach. This is consistent with the reduced performace for
scale factor 2 in those graphs.

TABLE I
IBM AC922 “NEWELL” ARCHITECTURE SUMMARY.

CPU 2 × POWER9
System RAM 512 GB

GPU 4x NVidia V100 (16GB) [7]
CPU-CPU Interconnect 64 GB/s X-bus

NVLink Triad Interconnect V2.0 x3 (150 GB/s)
CUDA Release 9.2.148
Nvidia Driver 396.44

Linux 4.14.0-49.13.1.el7a.ppc64le
Page Size 64 KB

Figure 4. Diagram of what operations are included in measured
total_time, gpu_time, count_time, and kernel_time. When
multiple triangle kernels run in a multi-GPU execution, kernel_time is
not reported.

G. Multi-GPU Approach

For the multi-GPU approach, we do a simple parti-
tion of the edges to each GPU. This causes substan-
tial load imbalance, since our edge orientation approach
causes low-index rows to be on average much longer than
high-index rows. The CSR structures are marked with the
cudaMemAdviseReadMostly hint (Section II-B to pre-
vent thrashing when multiple GPUs access the same page (for
example, if they read the same row).

III. RESULTS

A. Newell Evaluation Hardware

Triangle counting was evaluated on the same “Newell” plat-
form [6] used in our previous submission. Table I summarizes
the hardware and software environment of the evaluation. The
systems comprise two triads, CPU0-GPU0-GPU1 and CPU1-
GPU2-GPU3. Components within a triads are connected by
the listed “triad interconnect,” and the CPUs in each triad are
connected by the “CPU-CPU interconnect.”

B. Timing Methodology

Figure 4 summarizes what is included in the four reported
times for each graph. In all cases, the clock is stopped once the
final triangle count is available on the CPU. In total time, the
clock is started after the disk I/O is completed. In gpu time,
the clock is started after the CSR is constructed, before unified-
memory hints are provided to the system. In process time, the
clock is started after unified memory hints have completed,
but before counting operations begin. In kernel time, only
the actual triangle counting kernel is timed. The process time
is the time that includes all triangle counting operations,
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but excludes all other operations. Table II summarizes the
performance of our approach on all graphs.

C. Twitter Graph

We also evaluate performance on twitter [8], a follower-
followee relationship graph from 2014. Since the twitter
dataset is not provided by the Graph Challenge, we convert it
to take a similar form.

D. Comparison with Past Submissions

1) Mailthody et al. (2018 Finalist): In our 2018 submission
[9], we showed substantial performance degredation in some
multi-GPU runs, up to several orders of magnitude in some
cases. For the unified-memory case, this was due to unified
memory thrashing. For the zero-copy case, zero-copy causes
redundant host-to-device transfers because data is not cached
in GPU memory. Through the use of unified-memory hints,
we have brought the multi-GPU performance up to a more
reasonable baseline, where performance is actually improved
once the data is in the GPU. In addition, improvements to
the sequential kernel code as well as the dynamic algorithmic
selection have improved kernel performance.

2) Bisson & Fatica (2018 Champion): Due to differences in
procedure, there is no good direct comparison between [10]
(B&F) timing and ours. On the surface it seems natural to
compare B&F’s total_t with our total_time, but B&F
suggest that CSR construction is done on the GPU, as total
time starts after data has been copied “to device memory.”

An ideal comparison would be between our gpu_time
with their process_t plus matrix compaction, Such a com-
parison would ignore the differences in CSR construction time.
B&F do not provide results cut that way. Since their kernel is
typically substantially accelerated by their matrix processing,
a direct kernel-only comparison may be interesting but not
ultimately useful.

Finally, we designed our approach ultimately with scalabil-
ity to large graphs in mind, and it contains no steps (other
than the triangle counting) which require a full pass over
the graph data. B&F require processing the entire graph for
compaction, and again for triangle counting. If the graph does
not fit in GPU memory, this approach may not be feasible.
They reported requiring a GPU with 32GB instead of 16GB
of memory in order to process the friendster graph.

3) Hu, Liu, & Huang (2018 Champion): Our gpu_times
and count_times are substantially faster than [11]’s single-
GPU times on the larger graphs where they report reults,
though we evaluate on Nvidia V100s instead of P100s. For
the large graphs, they do not report single GPU results, though
their multi-GPU times are better than those achieved here.

4) Yacsar et al. (2018 Champion): Cilk gives [12] a work-
stealing runtime, an idea analogous to the work-stealing done
between warps in our dynamic kernel implementation. Many
of their peak rates are similar to ours for larger graphs, though
typically once a graph in the GPU memory our rates are much
higher.

IV. EXTRA CONTRIBUTIONS TO THE COMMUNITY

Our graph dataset handling code is available at https:
//github.com/cwpearson/graph-datasets2.

Some analysis of the Graph Challenge graph datasets has
been made available online at https://graphchallenge-datasets.
netlify.com.

Our triangle counting code is in the Pangolin library, cur-
rently available at https://github.com/c3sr/pangolin

V. CONCLUSION

We present an update to our 2018 submission, motivated by
understanding whether CUDA unified memory can be used as
a foundation for processing large graphs on high-bandwidth
heterogeneous systems. We introduce a work-stealing dynamic
algorithm GPU kernel with persistent threads, to make per-
formance adaptive for large graphs without requiring pre-
counting graph analysis. We utilize CUDA unified memory
to allow simultaneous access of large graph data on disk with
construction of graph data structures in GPU memory. We
utilize CUDA unified memory hints to tackle some perfor-
mance challenges when scaling to multiple GPUs. Finally,
we improve the single-GPU performance from our 2018
submission, and greatly improve the multi-GPU performance.
Based on these results, we believe this approach is a solid
foundation for scaling performance to large graphs. Moving
forward, we intend to look at techniques to improve the multi-
GPU load balancing, improving the dynamic algorithm kernels
to reflect advances in kernel performance achieved by other
teams, and extend our work to graphs that do not fit in GPU
memory.
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TABLE II
TRIANGLE COUNTING PERFORMANCE SUMMARY. TOTAL_TIME INCLUDES THE OVERLAPPED DISK I/O AND CSR CONSTRUCTION. GPU_TIME

INCLUDES COST OF TRANSFERRING DATA TO THE GPU. COUNT_TIME THE COST OF ALL COUNTING OPERATIONS. KERNEL_TIME INCLUDES ONLY THE
TRIANGLE COUNTING KERNEL TIME.

Elapsed Time (s) TEPS 2-GPU Speedup 4-GPU Speedup
graph edges nodes tris kernel count gpu total kernel count gpu total count gpu count gpu

friendster adj 1799999986 119432958 191716 6.11E-01 6.14E-01 1.37E+00 5.72E+01 2.94E+09 2.93E+09 1.31E+09 3.15E+07 1.33 0.97 2.02 0.62
twitter 1202513046 41652230 34824916864 2.97E+01 2.97E+01 3.02E+01 7.60E+01 4.05E+07 4.05E+07 3.98E+07 1.58E+07 1.11 1.10 1.78 1.70

graph500-scale25-ef16 adj 523467448 17043781 21575375802 2.06E+01 2.06E+01 2.08E+01 3.67E+01 2.54E+07 2.54E+07 2.51E+07 1.43E+07 1.52 1.51 2.75 2.61
graph500-scale24-ef16 adj 260261843 8860451 9936161560 8.34E+00 8.34E+00 8.46E+00 1.64E+01 3.12E+07 3.12E+07 3.08E+07 1.59E+07 1.58 1.56 2.87 2.63

201512020330.v226196185 e480047894 240023945 226196186 26 1.26E-01 1.27E-01 2.72E-01 8.09E+00 1.91E+09 1.88E+09 8.83E+08 2.97E+07 1.03 0.88 1.76 0.56
V1r 232705452 214005018 49 9.86E-03 1.17E-02 1.55E-01 7.44E+00 2.36E+10 2.00E+10 1.50E+09 3.13E+07 1.62 0.84 1.33 0.38
A2a 180292586 170728176 3858 9.25E-03 1.06E-02 1.21E-01 6.04E+00 1.95E+10 1.70E+10 1.49E+09 2.98E+07 1.34 0.83 1.19 0.37
P1a 148914992 139353212 3412 7.85E-03 9.61E-03 1.02E-01 5.11E+00 1.90E+10 1.55E+10 1.46E+09 2.91E+07 1.36 0.84 1.76 0.39

201512020130.v128568730 e270234840 135117420 128568731 10 6.71E-02 6.85E-02 1.55E-01 4.86E+00 2.01E+09 1.97E+09 8.73E+08 2.78E+07 1.01 0.92 1.43 0.55
graph500-scale23-ef16 adj 129250705 4606315 4549133002 3.23E+00 3.23E+00 3.29E+00 7.29E+00 4.00E+07 4.00E+07 3.93E+07 1.77E+07 1.44 1.42 2.52 2.30

201512020030.v68863315 e143414960 71707480 68863316 6 4.11E-02 4.25E-02 8.83E-02 2.59E+00 1.74E+09 1.69E+09 8.12E+08 2.77E+07 0.99 0.88 1.54 0.59
U1a 69389281 67716232 325 3.66E-03 5.11E-03 4.97E-02 2.39E+00 1.89E+10 1.36E+10 1.40E+09 2.90E+07 1.15 0.87 0.73 0.38

graph500-scale22-ef16 adj 64097004 2393286 2067392370 1.15E+00 1.15E+00 1.18E+00 3.12E+00 5.59E+07 5.58E+07 5.45E+07 2.05E+07 1.49 1.46 2.58 2.25
V2a 58608800 55042370 1443 3.06E-03 4.08E-03 4.20E-02 1.90E+00 1.91E+10 1.43E+10 1.39E+09 3.09E+07 0.82 0.80 0.74 0.40

201512020000.v35991342 e74485420 37242710 35991343 2 2.10E-02 2.28E-02 4.75E-02 1.35E+00 1.77E+09 1.64E+09 7.84E+08 2.75E+07 0.97 0.87 1.30 0.57
graph500-scale21-ef16 adj 31731650 1243073 935100883 4.38E-01 4.40E-01 4.55E-01 1.58E+00 7.24E+07 7.21E+07 6.98E+07 2.00E+07 1.52 1.48 2.62 2.22
Theory-5-9-16-25-81-B1k 28667380 2174641 66758995 2.99E-01 3.01E-01 3.14E-01 1.24E+00 9.57E+07 9.52E+07 9.12E+07 2.31E+07 1.13 1.11 1.74 1.55
Theory-5-9-16-25-81-B2k 28667380 2174641 155 1.36E-02 1.51E-02 2.88E-02 9.46E-01 2.10E+09 1.90E+09 9.97E+08 3.03E+07 0.96 0.91 0.97 0.58
Theory-5-9-16-25-81-Bk 23328000 2174641 0 6.67E-04 2.39E-03 1.35E-02 7.64E-01 3.50E+10 9.78E+09 1.73E+09 3.05E+07 0.90 0.87 0.36 0.42

201512012345.v18571154 e38040320 19020160 18571155 2 1.19E-02 1.34E-02 2.71E-02 6.92E-01 1.60E+09 1.42E+09 7.01E+08 2.75E+07 1.00 0.88 1.02 0.58
cit-Patents adj 16518947 3774769 7515023 4.41E-03 6.11E-03 1.51E-02 5.39E-01 3.74E+09 2.70E+09 1.09E+09 3.06E+07 1.13 0.97 0.88 0.54

graph500-scale20-ef16 adj 15680861 645821 419349784 1.69E-01 1.71E-01 1.78E-01 6.78E-01 9.28E+07 9.19E+07 8.80E+07 2.31E+07 1.41 1.36 2.37 1.96
Theory-3-4-5-9-16-25-B1k 11080030 530401 35882427 9.61E-02 9.79E-02 1.04E-01 4.69E-01 1.15E+08 1.13E+08 1.06E+08 2.36E+07 1.05 1.05 1.16 1.05
Theory-3-4-5-9-16-25-B2k 11080030 530401 651 6.99E-03 8.37E-03 1.49E-02 3.75E-01 1.59E+09 1.32E+09 7.41E+08 2.96E+07 0.87 0.91 0.73 0.58
graph500-scale19-ef16 adj 7729675 335319 186288972 6.52E-02 6.69E-02 7.15E-02 3.16E-01 1.18E+08 1.15E+08 1.08E+08 2.45E+07 1.40 1.36 2.13 1.71

Theory-3-4-5-9-16-25-Bk 6912000 530401 0 2.06E-04 1.90E-03 6.10E-03 2.28E-01 3.36E+10 3.64E+09 1.13E+09 3.03E+07 0.86 0.86 0.29 0.38
graph500-scale18-ef16 adj 3800348 174148 82287285 2.04E-02 2.21E-02 2.56E-02 1.48E-01 1.86E+08 1.72E+08 1.48E+08 2.57E+07 1.30 1.13 1.46 1.26

roadNet-CA adj 2766607 1965207 120676 1.21E-04 1.73E-03 5.21E-03 9.55E-02 2.28E+10 1.60E+09 5.31E+08 2.90E+07 0.53 0.84 0.51 0.62
Theory-9-16-25-81-B1k 2606125 362441 4059175 1.28E-02 1.40E-02 1.70E-02 1.05E-01 2.04E+08 1.86E+08 1.53E+08 2.47E+07 0.86 0.87 0.71 0.68
Theory-9-16-25-81-B2k 2606125 362441 35 6.75E-04 2.22E-03 4.11E-03 9.34E-02 3.86E+09 1.17E+09 6.35E+08 2.79E+07 0.59 0.64 0.34 0.38

amazon0601 adj 2443408 403395 3986507 6.97E-04 2.26E-03 4.10E-03 8.79E-02 3.50E+09 1.08E+09 5.97E+08 2.78E+07 0.72 0.66 0.42 0.42
amazon0505 adj 2439437 410237 3951063 5.62E-04 2.14E-03 5.06E-03 8.84E-02 4.34E+09 1.14E+09 4.82E+08 2.76E+07 0.54 0.72 0.60 0.62
amazon0312 adj 2349869 400728 3686467 6.03E-04 1.78E-03 4.73E-03 8.63E-02 3.90E+09 1.32E+09 4.97E+08 2.72E+07 0.55 0.76 0.30 0.43

Theory-9-16-25-81-Bk 2332800 362441 0 8.96E-05 1.65E-03 4.15E-03 8.56E-02 2.60E+10 1.41E+09 5.62E+08 2.73E+07 0.46 0.60 0.25 0.38
flickrEdges adj 2316948 105939 107987357 3.81E-03 4.77E-03 6.52E-03 8.66E-02 6.08E+08 4.86E+08 3.55E+08 2.67E+07 0.89 0.78 0.67 0.59

Theory-25-81-256-B1k 2132284 547925 2102761 7.93E-03 9.53E-03 1.21E-02 8.83E-02 2.69E+08 2.24E+08 1.76E+08 2.41E+07 0.91 0.89 0.78 0.70
Theory-25-81-256-B2k 2132284 547925 7 6.82E-04 2.26E-03 5.16E-03 8.14E-02 3.13E+09 9.42E+08 4.13E+08 2.62E+07 0.67 0.88 0.62 0.70

Theory-25-81-256-Bk 2073600 547925 0 7.73E-05 1.63E-03 4.43E-03 7.47E-02 2.68E+10 1.27E+09 4.68E+08 2.78E+07 0.93 1.06 0.48 0.59
roadNet-TX adj 1921660 1379918 82869 9.43E-05 8.61E-04 2.68E-03 6.50E-02 2.04E+10 2.23E+09 7.18E+08 2.96E+07 0.28 0.42 0.25 0.29

Theory-4-5-9-16-25-B1k 1582861 132601 3548463 1.69E-02 1.78E-02 1.93E-02 7.33E-02 9.36E+07 8.88E+07 8.21E+07 2.16E+07 0.84 0.80 0.75 0.71
Theory-4-5-9-16-25-B2k 1582861 132601 155 1.73E-03 2.50E-03 4.10E-03 5.85E-02 9.16E+08 6.32E+08 3.86E+08 2.71E+07 0.45 0.55 0.31 0.36

roadNet-PA adj 1541898 1088093 67150 7.39E-05 1.62E-03 3.33E-03 5.58E-02 2.09E+10 9.53E+08 4.62E+08 2.76E+07 0.66 0.66 0.49 0.46
Theory-4-5-9-16-25-Bk 1152000 132601 0 4.60E-05 1.58E-03 3.72E-03 4.50E-02 2.51E+10 7.29E+08 3.10E+08 2.56E+07 0.52 0.71 0.24 0.39
loc-gowalla edges adj 950327 196592 2273138 1.43E-03 2.32E-03 4.65E-03 3.87E-02 6.64E+08 4.09E+08 2.04E+08 2.46E+07 0.59 0.83 0.53 0.64

amazon0302 adj 899792 262112 717719 1.16E-04 1.66E-03 3.94E-03 3.60E-02 7.78E+09 5.43E+08 2.28E+08 2.50E+07 0.67 0.86 0.50 0.65
soc-Slashdot0902 adj 504230 82169 602592 6.61E-04 1.80E-03 2.59E-03 2.26E-02 7.63E+08 2.80E+08 1.94E+08 2.24E+07 0.87 0.65 0.52 0.45
soc-Slashdot0811 adj 469180 77361 551724 6.30E-04 1.75E-03 2.98E-03 2.24E-02 7.44E+08 2.69E+08 1.57E+08 2.10E+07 0.84 0.95 0.51 0.47

cit-HepPh adj 420877 34547 1276868 2.58E-04 1.78E-03 3.59E-03 2.06E-02 1.63E+09 2.37E+08 1.17E+08 2.04E+07 0.52 0.80 0.55 0.65
soc-Epinions1 adj 405740 75880 1624481 7.09E-04 1.44E-03 3.20E-03 1.98E-02 5.72E+08 2.81E+08 1.27E+08 2.04E+07 0.44 0.69 0.42 0.57

email-EuAll adj 364481 265215 267313 1.16E-03 2.24E-03 4.17E-03 1.95E-02 3.14E+08 1.63E+08 8.75E+07 1.86E+07 0.58 0.80 0.57 0.67
cit-HepTh adj 352285 27771 1478735 4.77E-04 1.95E-03 3.62E-03 1.87E-02 7.38E+08 1.81E+08 9.72E+07 1.88E+07 1.05 0.92 0.56 0.65

Theory-256-625-B1k 320881 160883 160000 9.48E-04 2.46E-03 3.69E-03 1.91E-02 3.38E+08 1.30E+08 8.68E+07 1.68E+07 0.67 0.69 0.65 0.61
Theory-256-625-B2k 320881 160883 1 1.56E-04 1.25E-03 2.74E-03 1.78E-02 2.06E+09 2.56E+08 1.17E+08 1.81E+07 0.69 0.69 0.40 0.51

Theory-256-625-Bk 320000 160883 0 2.34E-05 1.53E-03 2.03E-03 1.63E-02 1.37E+10 2.09E+08 1.57E+08 1.96E+07 0.43 0.44 0.48 0.37
Theory-3-4-5-9-16-B1k 217255 20401 465427 2.44E-03 3.95E-03 4.73E-03 1.52E-02 8.89E+07 5.50E+07 4.60E+07 1.43E+07 0.94 0.78 0.69 0.61
Theory-3-4-5-9-16-B2k 217255 20401 155 3.09E-04 1.18E-03 2.38E-03 1.31E-02 7.03E+08 1.84E+08 9.12E+07 1.66E+07 0.42 0.64 0.35 0.44

loc-brightkite edges adj 214078 58229 494728 2.37E-04 1.76E-03 2.88E-03 1.31E-02 9.03E+08 1.22E+08 7.43E+07 1.63E+07 0.58 0.57 0.54 0.53
email-Enron adj 183831 36693 727044 3.64E-04 1.89E-03 3.05E-03 1.25E-02 5.05E+08 9.71E+07 6.02E+07 1.47E+07 0.88 0.99 0.58 0.56

Theory-5-9-16-25-B1k 175873 26521 264799 1.32E-03 2.85E-03 3.22E-03 1.26E-02 1.34E+08 6.17E+07 5.46E+07 1.39E+07 1.05 0.68 0.65 0.52
Theory-5-9-16-25-B2k 175873 26521 35 9.99E-05 1.17E-03 2.31E-03 1.15E-02 1.76E+09 1.51E+08 7.61E+07 1.53E+07 0.43 0.57 0.38 0.44

p2p-Gnutella31 adj 147892 62587 2024 3.99E-05 1.07E-03 2.26E-03 1.01E-02 3.71E+09 1.38E+08 6.54E+07 1.46E+07 0.76 0.96 0.33 0.42
Theory-5-9-16-25-Bk 144000 26521 0 1.72E-05 1.52E-03 3.39E-03 1.17E-02 8.40E+09 9.47E+07 4.25E+07 1.23E+07 1.02 1.28 0.48 0.69

Theory-3-4-5-9-16-Bk 138240 20401 0 1.13E-05 6.83E-04 1.77E-03 9.73E-03 1.23E+10 2.02E+08 7.80E+07 1.42E+07 0.34 0.56 0.22 0.35
Theory-16-25-81-B1k 137164 36245 133321 1.21E-03 2.74E-03 3.11E-03 1.15E-02 1.13E+08 5.00E+07 4.41E+07 1.19E+07 1.04 0.82 0.66 0.49
Theory-16-25-81-B2k 137164 36245 7 2.59E-04 9.45E-04 2.83E-03 1.12E-02 5.29E+08 1.45E+08 4.85E+07 1.22E+07 0.31 0.73 0.29 0.54

Theory-16-25-81-Bk 129600 36245 0 1.30E-05 1.15E-03 2.96E-03 1.07E-02 9.95E+09 1.13E+08 4.38E+07 1.21E+07 0.48 0.93 0.38 0.60
ca-HepPh adj 118489 12009 3358499 1.58E-04 1.25E-03 2.50E-03 9.57E-03 7.50E+08 9.46E+07 4.74E+07 1.24E+07 0.68 0.71 0.40 0.49

ca-CondMat adj 93439 23134 173361 6.71E-05 7.52E-04 2.24E-03 8.58E-03 1.39E+09 1.24E+08 4.17E+07 1.09E+07 0.55 0.86 0.24 0.41
p2p-Gnutella30 adj 88328 36683 1590 2.55E-05 1.11E-03 2.61E-03 8.76E-03 3.46E+09 7.97E+07 3.39E+07 1.01E+07 0.41 0.69 0.36 0.53

facebook combined adj 88234 4040 1612010 2.02E-04 1.72E-03 2.85E-03 9.16E-03 4.37E+08 5.14E+07 3.10E+07 9.64E+06 0.96 0.85 0.55 0.59
p2p-Gnutella24 adj 65369 26519 986 3.58E-05 1.55E-03 1.85E-03 7.01E-03 1.83E+09 4.22E+07 3.54E+07 9.33E+06 0.90 0.73 0.48 0.42
p2p-Gnutella25 adj 54705 22688 806 2.84E-05 9.36E-04 1.24E-03 6.25E-03 1.93E+09 5.84E+07 4.40E+07 8.75E+06 0.44 0.42 0.31 0.26
Theory-81-256-B1k 41809 21075 20736 1.38E-04 1.65E-03 2.70E-03 7.68E-03 3.03E+08 2.54E+07 1.55E+07 5.45E+06 0.98 1.09 0.53 0.56
Theory-81-256-B2k 41809 21075 1 5.17E-05 1.09E-03 1.70E-03 6.42E-03 8.08E+08 3.84E+07 2.47E+07 6.51E+06 0.44 0.51 0.35 0.39

Theory-81-256-Bk 41472 21075 0 8.96E-06 6.91E-04 2.47E-03 7.42E-03 4.63E+09 6.00E+07 1.68E+07 5.59E+06 0.47 1.06 0.22 0.49
p2p-Gnutella04 adj 34305 10877 738 4.03E-05 1.56E-03 2.60E-03 7.38E-03 8.51E+08 2.19E+07 1.32E+07 4.65E+06 0.54 0.70 0.48 0.50

oregon2 010526 adj 32730 11462 89541 2.02E-04 8.92E-04 2.35E-03 6.18E-03 1.62E+08 3.67E+07 1.39E+07 5.30E+06 0.24 0.45 0.28 0.59
oregon2 010519 adj 32287 11376 83709 2.01E-04 8.96E-04 1.32E-03 5.16E-03 1.61E+08 3.60E+07 2.45E+07 6.26E+06 0.53 0.63 0.28 0.25
p2p-Gnutella05 adj 31839 8847 1112 3.85E-05 7.59E-04 1.81E-03 6.34E-03 8.27E+08 4.19E+07 1.76E+07 5.02E+06 0.43 0.60 0.24 0.43

oregon2 010414 adj 31761 11020 88905 1.31E-04 1.65E-03 3.08E-03 7.06E-03 2.43E+08 1.92E+07 1.03E+07 4.50E+06 0.91 1.01 0.52 0.61
oregon2 010421 adj 31538 11081 82129 1.92E-04 1.29E-03 2.64E-03 6.43E-03 1.64E+08 2.45E+07 1.20E+07 4.90E+06 0.50 0.72 0.40 0.51
p2p-Gnutella06 adj 31525 8718 1142 3.53E-05 1.55E-03 3.09E-03 7.06E-03 8.92E+08 2.03E+07 1.02E+07 4.47E+06 0.72 1.04 0.47 0.70

oregon2 010428 adj 31434 11114 78000 1.95E-04 1.72E-03 2.74E-03 6.53E-03 1.61E+08 1.83E+07 1.15E+07 4.81E+06 0.52 0.59 0.51 0.60
oregon2 010512 adj 31303 11261 72866 1.91E-04 8.81E-04 1.92E-03 6.17E-03 1.64E+08 3.55E+07 1.63E+07 5.07E+06 0.58 0.77 0.27 0.39
oregon2 010331 adj 31180 10901 82856 1.90E-04 8.82E-04 2.04E-03 5.82E-03 1.64E+08 3.54E+07 1.53E+07 5.35E+06 0.29 0.43 0.28 0.41
Theory-4-5-9-16-B1k 31036 5101 45013 2.15E-04 1.33E-03 2.86E-03 7.09E-03 1.44E+08 2.34E+07 1.09E+07 4.38E+06 0.70 1.11 0.41 0.54
Theory-4-5-9-16-B2k 31036 5101 35 1.03E-04 1.63E-03 2.37E-03 6.65E-03 3.01E+08 1.90E+07 1.31E+07 4.67E+06 0.56 0.62 0.51 0.51
oregon2 010505 adj 30943 11158 72182 1.52E-04 8.45E-04 2.59E-03 6.28E-03 2.03E+08 3.66E+07 1.19E+07 4.93E+06 0.29 0.70 0.27 0.52
oregon2 010407 adj 30855 10982 78138 1.86E-04 1.29E-03 2.82E-03 7.35E-03 1.66E+08 2.39E+07 1.09E+07 4.20E+06 0.42 0.68 0.41 0.67
p2p-Gnutella09 adj 26013 8115 2354 3.89E-05 7.81E-04 2.19E-03 5.99E-03 6.68E+08 3.33E+07 1.19E+07 4.34E+06 0.28 0.57 0.25 0.50

ca-HepTh adj 25973 9878 28339 3.01E-05 1.11E-03 2.31E-03 6.54E-03 8.62E+08 2.33E+07 1.12E+07 3.97E+06 0.51 0.77 0.35 0.46
oregon1 010526 adj 23409 11175 19894 1.36E-04 1.55E-03 3.03E-03 6.65E-03 1.72E+08 1.51E+07 7.73E+06 3.52E+06 0.62 0.78 0.50 0.64
Theory-4-5-9-16-Bk 23040 5101 0 1.46E-05 1.79E-03 2.95E-03 7.00E-03 1.58E+09 1.29E+07 7.80E+06 3.29E+06 1.03 1.06 0.58 0.61

oregon1 010421 adj 22747 10860 19108 1.03E-04 1.18E-03 1.81E-03 5.74E-03 2.22E+08 1.93E+07 1.26E+07 3.96E+06 0.42 0.46 0.38 0.35
oregon1 010519 adj 22724 11052 17677 1.31E-04 1.65E-03 2.40E-03 5.91E-03 1.74E+08 1.38E+07 9.47E+06 3.85E+06 1.13 0.75 0.54 0.48
oregon1 010512 adj 22677 11012 17598 1.25E-04 1.64E-03 2.02E-03 5.54E-03 1.81E+08 1.38E+07 1.13E+07 4.09E+06 0.92 0.83 0.53 0.39
oregon1 010505 adj 22607 10944 17597 1.35E-04 1.29E-03 2.02E-03 5.63E-03 1.67E+08 1.75E+07 1.12E+07 4.02E+06 0.35 0.41 0.40 0.46
oregon1 010428 adj 22493 10887 17645 1.11E-04 7.94E-04 1.48E-03 5.01E-03 2.03E+08 2.83E+07 1.52E+07 4.49E+06 0.44 0.45 0.25 0.34
oregon1 010414 adj 22469 10791 18237 1.15E-04 1.63E-03 2.27E-03 5.87E-03 1.96E+08 1.38E+07 9.88E+06 3.83E+06 0.57 0.49 0.50 0.46
oregon1 010331 adj 22002 10671 17144 1.10E-04 1.63E-03 2.64E-03 6.24E-03 1.99E+08 1.35E+07 8.33E+06 3.52E+06 0.96 0.96 0.51 0.50
oregon1 010407 adj 21999 10730 15834 1.08E-04 1.64E-03 2.73E-03 6.28E-03 2.03E+08 1.34E+07 8.05E+06 3.50E+06 0.56 0.67 0.50 0.55
p2p-Gnutella08 adj 20777 6302 2383 3.92E-05 1.14E-03 1.58E-03 5.30E-03 5.30E+08 1.83E+07 1.31E+07 3.92E+06 0.49 0.43 0.36 0.32

Theory-9-16-25-B1k 15988 4421 15169 2.05E-04 8.95E-04 1.21E-03 4.50E-03 7.78E+07 1.79E+07 1.32E+07 3.55E+06 0.31 0.27 0.28 0.26
Theory-9-16-25-B2k 15988 4421 7 6.53E-05 1.58E-03 2.23E-03 5.48E-03 2.45E+08 1.01E+07 7.18E+06 2.92E+06 0.67 0.56 0.48 0.41

ca-GrQc adj 14484 5243 48260 3.38E-05 1.55E-03 2.96E-03 6.68E-03 4.28E+08 9.33E+06 4.90E+06 2.17E+06 0.56 0.75 0.48 0.58
Theory-9-16-25-Bk 14400 4421 0 9.34E-06 7.44E-04 2.06E-03 5.74E-03 1.54E+09 1.94E+07 7.01E+06 2.51E+06 0.45 0.77 0.24 0.41

as20000102 adj 12572 6475 6584 2.04E-04 1.77E-03 2.76E-03 5.75E-03 6.15E+07 7.10E+06 4.55E+06 2.19E+06 0.70 0.68 0.58 0.58
Theory-3-4-5-9-B1k 6583 1201 9107 1.50E-04 8.87E-04 1.20E-03 4.10E-03 4.39E+07 7.42E+06 5.48E+06 1.61E+06 0.50 0.49 0.26 0.24
Theory-3-4-5-9-B2k 6583 1201 35 3.25E-05 7.36E-04 1.72E-03 4.34E-03 2.02E+08 8.95E+06 3.84E+06 1.52E+06 0.29 0.48 0.23 0.33

Theory-3-4-5-9-Bk 4320 1201 0 1.33E-05 1.52E-03 2.82E-03 5.35E-03 3.24E+08 2.84E+06 1.53E+06 8.07E+05 0.55 0.74 0.49 0.67
Theory-25-81-B1k 4156 2133 2025 5.14E-05 7.71E-04 2.21E-03 4.88E-03 8.09E+07 5.39E+06 1.88E+06 8.51E+05 0.21 0.47 0.25 0.45
Theory-25-81-B2k 4156 2133 1 2.40E-05 1.54E-03 3.07E-03 6.10E-03 1.73E+08 2.69E+06 1.35E+06 6.81E+05 0.89 1.13 0.49 0.64

Theory-25-81-Bk 4050 2133 0 1.35E-05 1.53E-03 2.64E-03 5.32E-03 3.00E+08 2.65E+06 1.53E+06 7.62E+05 0.62 0.67 0.47 0.53
Theory-5-9-16-B1k 3448 1021 3149 5.48E-05 7.79E-04 2.15E-03 4.35E-03 6.30E+07 4.43E+06 1.60E+06 7.93E+05 0.42 0.59 0.25 0.44
Theory-5-9-16-B2k 3448 1021 7 3.05E-05 7.14E-04 2.14E-03 4.42E-03 1.13E+08 4.83E+06 1.61E+06 7.81E+05 0.44 0.79 0.22 0.43

Theory-5-9-16-Bk 2880 1021 0 1.27E-05 1.52E-03 2.15E-03 4.37E-03 2.27E+08 1.90E+06 1.34E+06 6.60E+05 1.03 0.74 0.49 0.52
Theory-4-5-9-B1k 940 301 821 4.74E-05 1.56E-03 3.21E-03 4.87E-03 1.98E+07 6.02E+05 2.93E+05 1.93E+05 0.68 1.10 0.51 0.79
Theory-4-5-9-B2k 940 301 7 1.93E-05 7.48E-04 1.68E-03 3.96E-03 4.87E+07 1.26E+06 5.59E+05 2.38E+05 0.43 0.60 0.24 0.43
Theory-16-25-B1k 841 443 400 3.53E-05 7.16E-04 1.24E-03 3.01E-03 2.38E+07 1.17E+06 6.77E+05 2.80E+05 0.42 0.37 0.23 0.27
Theory-16-25-B2k 841 443 1 1.42E-05 7.05E-04 9.09E-04 2.81E-03 5.93E+07 1.19E+06 9.25E+05 3.00E+05 0.41 0.38 0.22 0.21

Theory-16-25-Bk 800 443 0 8.83E-06 1.20E-03 1.61E-03 3.45E-03 9.06E+07 6.66E+05 4.98E+05 2.32E+05 0.74 0.57 0.38 0.39
Theory-4-5-9-Bk 720 301 0 8.42E-06 1.02E-03 2.00E-03 4.24E-03 8.56E+07 7.03E+05 3.59E+05 1.70E+05 0.76 0.65 0.34 0.42

Theory-3-4-5-B1k 346 121 287 2.99E-05 6.28E-04 1.68E-03 3.56E-03 1.16E+07 5.51E+05 2.06E+05 9.72E+04 0.20 0.38 0.20 0.40
Theory-3-4-5-B2k 346 121 7 1.63E-05 1.90E-03 2.97E-03 4.80E-03 2.13E+07 1.82E+05 1.16E+05 7.20E+04 1.18 1.30 0.60 0.71
Theory-9-16-B1k 313 171 144 3.03E-05 8.36E-04 2.58E-03 4.43E-03 1.03E+07 3.74E+05 1.21E+05 7.06E+04 0.26 0.64 0.27 0.62
Theory-9-16-B2k 313 171 1 1.68E-05 7.24E-04 1.43E-03 3.24E-03 1.86E+07 4.32E+05 2.19E+05 9.66E+04 0.51 0.49 0.19 0.27

Theory-9-16-Bk 288 171 0 1.36E-05 1.49E-03 1.81E-03 3.32E-03 2.12E+07 1.93E+05 1.59E+05 8.67E+04 0.54 0.42 0.40 0.34
Theory-3-4-5-Bk 240 121 0 1.26E-05 6.12E-04 2.03E-03 3.53E-03 1.90E+07 3.92E+05 1.18E+05 6.80E+04 0.22 0.46 0.18 0.39
Theory-5-9-B1k 104 61 45 1.98E-05 6.13E-04 1.54E-03 2.83E-03 5.24E+06 1.70E+05 6.74E+04 3.67E+04 0.45 0.75 0.18 0.36
Theory-5-9-B2k 104 61 1 1.37E-05 1.01E-03 1.70E-03 3.74E-03 7.61E+06 1.03E+05 6.10E+04 2.78E+04 0.49 0.54 0.31 0.35
Theory-5-9-Bk 90 61 0 1.28E-05 6.10E-04 1.53E-03 2.74E-03 7.01E+06 1.48E+05 5.87E+04 3.28E+04 0.37 0.65 0.18 0.36

Theory-4-5-B1k 49 31 20 1.53E-05 6.18E-04 1.31E-03 2.83E-03 3.20E+06 7.94E+04 3.73E+04 1.73E+04 0.44 0.46 0.16 0.28
Theory-4-5-B2k 49 31 1 1.40E-05 1.49E-03 2.90E-03 4.39E-03 3.51E+06 3.29E+04 1.69E+04 1.12E+04 0.70 1.03 0.45 0.69
Theory-4-5-Bk 40 31 0 1.38E-05 1.50E-03 2.03E-03 3.12E-03 2.91E+06 2.67E+04 1.97E+04 1.28E+04 1.05 0.86 0.44 0.44

Theory-3-4-B1k 31 21 12 1.35E-05 6.12E-04 1.86E-03 3.00E-03 2.29E+06 5.07E+04 1.66E+04 1.03E+04 0.44 0.74 0.18 0.38
Theory-3-4-B2k 31 21 1 1.31E-05 6.08E-04 7.67E-04 2.08E-03 2.37E+06 5.10E+04 4.04E+04 1.49E+04 0.30 0.28 0.17 0.16
Theory-3-4-Bk 24 21 0 1.29E-05 1.51E-03 2.84E-03 4.24E-03 1.86E+06 1.58E+04 8.45E+03 5.67E+03 0.74 0.94 0.46 0.58
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