
Carl Pearson 1, Mohammad Almasri 1, Omer Anjum 1, Vikram Mailthody 1, Zaid Qureshi 2, Rakesh Nagi 3, Jinjun Xiong 4, Wen-mei Hwu 1

1 Electrical and Computer Engineering / 2 Computer Science / 3 Industrial and Systems Engineering, University of Illinois Urbana-Champaign, Urbana, IL
4 IBM T.J. Watson Research, Yorktown Heights, NY

Acknowledgements: This work is supported by IBM-ILLINOIS Center for Cognitive Computing Systems Research
(C3SR) - a research collaboration as part of the IBM AI Horizons Network. This work utilizes resources supported by
the National Science Foundation’s Major Research Instrumentation program, grant #1725729, and University of Illinois
at Urbana-Champaign

This poster prevents the current status of several techniques
being studied to achieve high-performance triangle counting,
including
• persistent-block dynamic algorithm selection kernel

designed to retain high performance on a variety of graph
structures without an analysis phase

• Foundational techniques for multi-GPU scaling on unified
memory system

• Initial design of a task-partitioning strategy for triangle
counting to improve multi-GPU scaling

We are applying lessons learned from this work in more
complicated graph analytics problems.

Introduction

External Resources
Pangolin Graph library: github.com/c3sr/pangolin
Dataset Management: github.com/cwpearson/graph-datasets2

Persistent-Warp Kernel Multi-GPU Unified Memory

Future 2D Partitioning

a ∩ b Expected Global Memory Accesses
Linear len(a) + len(b)
Binary len(b) ⨉ log2(len(a))

Triangles for each directed edge are the number of common
neighbors the source and destination vertex share. Graph is
stored in CSR (compressed sparse row) format, with sorted
rows. Key triangle counting operation is a sorted set
intersection.

Triangle Counting
1

4

5

count triangles for directed edge vsrc → vdst

let nbrs(v) -> { neighbors of vertex v }
let len(s) -> size of set s
count = 0
for all vdst in nbrs(vsrc):
count += len(nbrs(vsrc) ∩ nbrs(vdst))

3

6

2vsrc

vdst

3 5 6

nbrs(1)

nbrs(4)

2 4 5

3 5 6

2 4 5

linear search (left), a single position is compared in each list,
and the lower position is advanced. When values match, the
count is incremented and both are increased. In binary
search (right), a binary search through the longer list is
execute in parallel for each element in the shorter list.

Update on Triangle Counting on GPU

7

7 7

Persistent-warp kernel fills the GPUs with long-lived warps.
Warps use atomics to claim groups of 32 edges, estimate
fastest algorithm, and use that algorithm to count triangles
for all 32 edges.

The estimated binary search cost is multiplied by a scaling
factor sf to account for dynamic cost of each algorithm. Low
sf favors binary search, high sf linear search. Based on
empirical evaluation of large graphs, sf = 2 is chosen for this
platform.

CPU CPU

GPU

GPU

GPU

GPU

IBM AC-922 Evaluation System

Two IBM POWER 9 CPUs, 512 GB RAM, 4 Nvidia V100
(16GB) GPUs, NVLink 2.0 150 GB/s triad interconnect, 64
GB/s CPU-CPU interconnect.

Linear Search Binary Search

Ultimately, the dynamic algorithm is typically able to achieve
performance of the best of either the linear or binary
algorithm.

Figure 1: Empirical study of scaling factor on dynamic kernel performance (edges per
second).

Figure 2: Comparison of performance between linear search, binary search, and
dynamic search kernel. The dynamic kernel uses sf=2.

Lower-triangular CSR Graph
Data stored in unified memory

The CSR data is stored in unified memory, which provides a
coherent memory image to all devices. Base edges are split
evenly among GPUs, leading to substantial load imbalance
and access overlap. Data is marked
cudaMemAdviseReadMostly to prevent thrashing for
multiple devices.

N2 partitions and N3 tasks. Task {i,j,k}
counts a subsect triangles for edges
between vertices in row partitions i and j
(partition i,j). Non-zeros from partitions
I,k and j,k compared for partial triangle
count.

Figure 3: TASK (2, 2, 1}. PARTITION 3,2 HOLDS
THE EDGES THAT START IN ROW PARTITION 3
AND END IN 2. PARITIONS 3,1 AND 2,1 HOLD

THE PORTIONS OF THE ROWS FOR WHICH
THE INTERSECTION WILL BE COMPUTED.

Partitions can be sized to fit in the local memory of a GPU
even for large graphs. All N3 tasks can be executed
independently.

