
Using Nsight Compute and Nsight Systems
Carl Pearson (lastname at illinois.edu)
16 April 2020
University of Illinois ECE 408 Guest Lecture

1

ECE ILLINOIS

Objective

● CUDA ecosystem tools for understanding GPU performance
○ and system performance as it related to GPU utilization.

● Not covered: tools to understand host code performance
○ gprof, perf, vtune, etc

2

ECE ILLINOIS

Outline

● Introduction to Profiling
● Development Model and Profiling Strategy
● Preparing for profiling
● Measuring time with CUDA Events
● Reminder / Introduction to Matrix Multiplication
● Nvidia Nsight Compute
● Nvidia Nsight Systems

3

ECE ILLINOIS

Resources

● Everything used in this lecture is at
github.com/cwpearson/nvidia-performance-tools

● Use it any way you want (with attribution).
○ Docker images for amd64 and ppc64le with CUDA and recent versions of Nsight

○ Matrix multiplication examples (in sgemm/)

○ rai_build.yml for sgemm (in sgemm/) if you have access to rai

○ Build and profile the examples on any system

4

https://github.com/cwpearson/nvidia-performance-tools

ECE ILLINOIS

System- and Kernel-Level Profiling

● Nsight Compute: Kernel-Level Profiling
○ How fast does the GPU execute my kernel?

● Nsight Systems: System-level Profiling:
○ how effectively is my system delivering work to the GPU?

○ What is my system doing while the GPU is working?

○ How fast is data moving to/from the GPU?

○ How much time does the CPU take to control the GPU?

○ When do asynchronous operations occur?

5

ECE ILLINOIS

Common GPU Development Model

Developer on on a
computer without a
GPU, or with the
wrong kind of GPU

Server with GPUs

“client” “target platform”

6

control through SSH

transfer data:
scp or network file system

ECE ILLINOIS

Our GPU Development Model

You on your laptop Server with GPUs

“client” “target platform”
specify job with
rai

download from
rai

7

ECE ILLINOIS

Two-Phase Profiling

Record Profiling Data on target

nsys profile ...
nv-nsight-compute-cli ...

Analyze profiling data
on client

nsight-sys
nv-nsight-computeCopy profiling data to client

ssh, scp, wget, curl

8

ECE ILLINOIS

Preparing for Profiling: Host Code Annotations

Nvidia Tools Extensions

#include <nvToolsExt.h> and link with -lnvToolsExt

Will show up as a named span in the Nsight System GUI

Useful for marking parts of the code for later reference.

nvtxRangePush(“sleeping”);
sleep(100);
nvtxRangePop();

9

ECE ILLINOIS

Preparing for Profiling: Correctness

● Subtle errors that do not cause your kernel to terminate under normal
conditions can cause errors with profiling

○ esp. writing outside of allocated memory

● Run your code with cuda-memcheck if profiling crashes or misbehaves
○ Automatically instruments for bad memory behavior

○ Causes something like 100x slowdown, so try small datasets first

○ Fix any errors that come up, then profile again

cuda-memcheck ./my-cuda-binary

10

ECE ILLINOIS

Preparing for Profiling: Compiling

● Compile device code with optimizations
○ non-optimized or debug code often has many more memory references

○ nvcc by default applies many optimizations to device code

○ remove any -G flag (this flag generated debug info for device code)

● Compile device code with line number annotations
○ add -lineinfo flag to all nvcc calls

○ puts some info in the binary about what source file locations generated what machine code

$ nvcc -G main.cu $ nvcc -lineinfo main.cu

11

ECE ILLINOIS

Preparing for Profiling: Compiling

--generate-line-info / -lineinfo
 Generate line-number information for device code.

Annotates the binary with information to correlate ptx back to CUDA source code

.loc 1 18 12 // file 1 line 18 col 12
cvta.to.global.u64 %rd1, %rd6;
mov.u32 %r27, %ctaid.x;
mov.u32 %r1, %ntid.x;
mov.u32 %r28, %tid.x;
mad.lo.s32 %r2, %r27, %r1, %r28;

18: int gidx = blockDim.x *
19: blockIdx.x + threadIdx.x;

Compiled PTX CUDA Source Code

12

ECE ILLINOIS

Preparing for Profiling: Compiling

Don’t use any of these for Nsight profiling!

--profile / -pg
 Instrument generated code/executable for use by gprof (Linux only).
--debug / -g
 Generate debug information for host code.
--device-debug / -G
 Generate debug information for device code. Turns off all optimizations.
 Don't use for profiling; use -lineinfo instead.

13

ECE ILLINOIS

Preparing for Profiling: System

Nsight System uses various system hooks to accomplish profiling.

Some errors would reduce the amount or accuracy of gathered info, some will make
system profiling impossible. Consult the documentation for how to correct.

An example of a GOOD output: (check with nsys status -e)

$ nsys status -e
Sampling Environment Check
Linux Kernel Paranoid Level = 2: OK
Linux Distribution = Ubuntu
Linux Kernel Version = 4.16.15-41615: OK
Linux perf_event_open syscall available: OK
Sampling trigger event available: OK
Intel(c) Last Branch Record support: Available
Sampling Environment: OK

14

ECE ILLINOIS

Caveats:

Profiling affects the performance of your kernel!

It will help you improve the speed, but do not report the time during profiling as the
performance of your code. Always run and time without profiling.

15

ECE ILLINOIS

Following along with your own rai account

Example code / project folder at github.com/cwpearson/nvidia-performance-tools

Run it through rai and retrieve the results. Rai will provide you with the URL at the
end you need to download.

$ git clone https://github.com/cwpearson/nvidia-performance-tools.git
$ cd nvidia-performance-tools
$ cd sgemm
$ rai -p .
$...
$ wget http://s3.amazonaws.com/file.rai-project.com/userdata/<your job file here>

You will also need to install Nsight Compute and Nsight Systems on your own laptop
(or use EWS) to view the resulting files.

16

http://github.com/cwpearson/nvidia-performance-tools
https://github.com/cwpearson/nvidia-performance-tools.git
http://s3.amazonaws.com/file.rai-project.com/userdata/

Matrix Multiplication Review

17

ECE ILLINOIS

Reminder: Dense Matrix Multiplication

● Each thread produces a single product

value C
i,j

 by dot(A
i
, B

j
)

● A and C are column-major, B is row-major
○ access to B is coalesced

● Each entry of the A/B matrices loaded from

global memory multiple times

A

B

C

18

C = A ✖ B

ECE ILLINOIS

Reminder: Shared-Memory Tiling

● Each thread produces a single product

value C
i,j

 by dot(A
i
, B

j
)

● Each thread block collaboratively loads

tiles of A and B to accumulate partial

products
○ Much reuse comes from fast shared

memory instead of slow global memory

Partial Products
from tile 1

Partial Products
from tile 2

Partial Products
from tile 3

Accumulate partial
products into result

19

A

B

C

ECE ILLINOIS

Joint Shared-Memory Register Tiling

● Not required to understand or reproduce for ECE 408
● Registers

○ Extremely high throughput: think 3 64-bit operands per cycle per thread

○ private to each thread: thread coarsening

● Shared Memory
○ Very high throughput

○ shared between threads: no coarsening

● Tiled requires TILE_SIZE2 shared memory per block to produce TILE_SIZE2
partial products

● Joint requires TILE_SZ_A shared memory and TILE_SZ_B * TILE_SZ_A registers
to produce TILE_SZ_A * TILE_SZ_B results

20

ECE ILLINOIS

Joint Shared-Memory Register Tiling

1st A
load

2nd A
load

Load a tile of
B into shared
memory

Load values
from A row
and multiply
by many
values from B

21

ECE ILLINOIS

SGEMM Comparison

A
Reuse

B Reuse Product Data per
Block

SH/block Reg/blk

Basic 1 1 1024 0 1024 * 4B 4KB

Tiled 32
(TILE_
SIZE)

32
(TILE_SIZE)

1024
(TILE_SIZE2)

32*32*2 * 4B =
8KB

1024 * 4B = 4 KB

Joint 16
(TILE_
SZ_B)

64
(TILE_SZ_A)

1024 (TILE_SZ_A
* TILE_SZ_B)

64 * 4B = 256B (64 * 16 + 64 * 4) *
4B = 5KB

22

ECE ILLINOIS

Example Files

● Three provided files to measure kernel times
● 1-1-pinned-basic / 1_1_pinned_basic.cu

○ Basic global-memory matrix-matrix multiplication

● 1-2-pinned-tiled / 1_2_pinned_tiled.cu
○ Shared-memory tiled matrix-matrix multiplication

● 1-3-pinned-joint / 1_3_pinned_joint.cu
○ Joint shared-memory and register-tiled matrix-matrix multiplication

● Each takes following options
○ --iters <int>: how many iterations to average the measurement over (default 5)

○ --warmup <int>: how many warmup runs before measuring (default 5)

23

Measuring Time with CUDA Events

24

ECE ILLINOIS

Terminology

● Stream (cudaStream_t)
○ A queue of sequential CUDA events. Each is executed after the prior one finishes

○ A program can use any number of CUDA streams

○ Associated with a device

● Default Stream (cudaStream_t = 0)
○ A special stream that is used when no stream is provided

● Event (cudaEvent_t)
○ Records the state of a stream

● See CUDA programing guide for stream synchronization edge cases
● Generally, to overlap operations:

○ different streams

○ do not use pageable memory

○ use *async CUDA runtime functions

25

ECE ILLINOIS

Timing Async Operations with CUDA Events

cudaEvent_t start, stop;
cudaStream_t stream;
cudaStreamCreate(&stream);
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, stream);
cudaMemcpyAsync(..., stream);
kernel<<<dimGrid, dimBlock, 0, stream>>>();
cudaEventRecord(stop, stream);
cudaMemcpyAsync(..., stream);
cudaEventSynchronize(stop);
float millis;
cudaEventElapsedTime(&millis, start, stop);

Place and events in the stream before and after

the things you want to measure.
Executed when the stream reaches the event, not

when cudaEventRecord is called.

Wait for the final event to be reached. Could use

cudaStreamSynchronize or

cudaDeviceSynchronize too.

Get the time between the start and stop event.

26

ECE ILLINOIS

Walkthrough
This method is used to measure the kernel times in 1_1_pinned_basic.cu,
1_2_pinned_tiled.cu, and 1_3_pinned_joint.cu
These results also present in 1-1-pinned-basic.txt

✱ Running bash -c "./1-1-pinned-basic | tee 1-1-pinned-basic.txt"
generate data
transfer to GPU
0: 3.75206
1: 3.73158
2: 3.73213
3: 3.73149
4: 3.73379
5: 3.73146 *
6: 3.73043 *
7: 3.72659 *
8: 3.73094 *
9: 3.72835 *
kernel 1787.02GFLOPS (6664784846 flop, 0.00372956s)

these contribute to
reported time

warmup runs

average kernel
performance

27

ECE ILLINOIS

My Results

Kernel Performance Speedup

Basic 1787 GFLOPS -

Tiled 2585 GFLOPS 1.45

Joint 6203 GFLOPS 3.47

Yours may be different

28

Kernel Profiling with Nsight Compute

29

ECE ILLINOIS

Nvidia Nsight Compute

● Record and analyze detailed kernel performance metrics
● Two interfaces:

○ GUI (nv-nsight-cu)

○ CLI (nv-nsight-cu-cli)

● Directly consuming 1000 metrics is challenging, we use the GUI to help
● Use a two-part record-then-analyze flow with rai

Record data on target platform download Analyze data on client

nv-nsight-cu-cli nv-nsight-cu

30

ECE ILLINOIS

Kernel Profiling

● Device has many performance counters to record detailed information
○ Made available as “metrics”.

○ Titan V on rai supports ~1100 metrics, some shown below

○ $ nv-nsight-cu-cli --devices 0 --query-metrics

lts__t_sectors_srcunit_l1_op_atom_dot_cas # of LTS sectors from unit L1 for atomic CAS
l1tex__data_pipe_lsu_wavefronts_mem_shared_cmd_write # of shared write wavefronts processed by Data-Stage
lts__t_sectors_srcunit_l1_aperture_sysmem_op_read # of LTS sectors from unit L1 accessing system memory
(sysmem) for readslts__t_requests_op_red_lookup_hit # of LTS requests for reductions that hit

lts__t_sectors_equiv_l1tagmiss_pipe_tex_mem_texture_op_ld # of sectors requested for TLD instructions
l1tex__t_bytes_pipe_tex_lookup_miss # of bytes requested that missed for TEX pipe
l1tex__texin_requests_mem_texture # of texture requests (quads) sent to
TEXINl1tex__t_bytes_pipe_lsu_mem_local_op_ld_lookup_miss # of bytes requested that missed for local
loadsl1tex__t_bytes_pipe_tex_mem_surface_op_red_lookup_miss # of bytes requested that missed for surface reductions
...

31

ECE ILLINOIS

Record kernel traces

$ nv-nsight-cu-cli \
 --kernel-id ::mygemm:6 \
 --section “.*” \
 -o 1-1-pinned-basic \
 1-1-pinned-basic

Profile the 6th time the “mygemm” kernel runs

Record metrics for all report sections

Create “1-1-pinned-basic.nsight-cuprof-report”

Name of the CUDA executable to profile

Do the same for the 1-2-pinned-tiled and 1-3-pinned-joint files

If you’re following along in rai, the rai_build.yml recipe does this for you
when you submit the sgemm folder to rai:

$ cd sgemm
$ rai -p .

32

ECE ILLINOIS

Nsight Compute Sections

A group of related measurements

The default list can be generated by

$ nv-nsight-cu-cli --list-sections

Without the --sections options, this is what would be recorded

We provide a regex that matches all sections

----------------------------- ------------------------------- ------- --
Identifier Display Name Enabled Filename
----------------------------- ------------------------------- ------- --
ComputeWorkloadAnalysis Compute Workload Analysis no .../../../sections/ComputeWorkloadAnalysis.section
InstructionStats Instruction Statistics no ...64/../../sections/InstructionStatistics.section
LaunchStats Launch Statistics yes ...1_3-x64/../../sections/LaunchStatistics.section
MemoryWorkloadAnalysis Memory Workload Analysis no ...4/../../sections/MemoryWorkloadAnalysis.section
MemoryWorkloadAnalysis_Chart Memory Workload Analysis Chart no /sections/MemoryWorkloadAnalysis_Chart.section
MemoryWorkloadAnalysis_Tables Memory Workload Analysis Tables no .../sections/MemoryWorkloadAnalysis_Tables.section
Occupancy Occupancy yes ...ibc_2_11_3-x64/../../sections/Occupancy.section
SchedulerStats Scheduler Statistics no ...-x64/../../sections/SchedulerStatistics.section
SourceCounters Source Counters no ..._11_3-x64/../../sections/SourceCounters.section
SpeedOfLight GPU Speed Of Light yes ..._2_11_3-x64/../../sections/SpeedOfLight.section
WarpStateStats Warp State Statistics no ...-x64/../../sections/WarpStateStatistics.section

33

ECE ILLINOIS

Open in Nsight Compute

Start Nsight Compute

File > Open File ... > 1-1-pinned-basic.nsight-cuprof-report

● Can open multiple files, will be open in multiple tabs
○ Can also use different runs as “baselines” for comparison in the same tab

○ Click “Add Baseline”

34

ECE ILLINOIS

Next tab now
has
comparison

Tabs and
baseline
button

35

ECE ILLINOIS

GPU Speed of Light

Mouse over each to see the associated metric

36

ECE ILLINOIS

Section: GPU Speed of Light

● Achieved percentage of utilization w.r.t theoretical maximum

Basic Tiled Joint

(GFLOPS) 1787 2585 6203

SoL SM 58.18 61.74 58.39

SoL Memory 63.89 85.44 71.28

1) Why isn’t tiled multiplication even faster?
2) Why is joint multiplication so fast?

37

ECE ILLINOIS

Workload Memory
 Analysis:
 Memory Chart

Global Memory: shared by all threads

Local Memory: private per-thread

Shared Memory: shared by threads in a block

Texture/Surface: Cached for 2D spatial locality

Constant (?): Cached in the constant cache

Executed instructions that
reference a memory space

Requests to the
memory

Amount of data
moving

38

ECE ILLINOIS

Memory Workload Analysis: Charts

● Detailed information summarized in the

Memory Chart

● Uses TEX to mean the first-level cache.

39

ECE ILLINOIS

Memory Workload Analysis
Basic Tiled Joint

GFLOPS 1787 2585 6203

Speed of Light: Memory 63.89 85.44 71.28

Global Load Cached (% peak) 59.24 2.70 8.09

Global Load Cached (SM->TEX REQ) 209M 6.6M 8.2M

Shared Load (REQ) 0 160M 54M

L1 Hit Rate 94.84 74.75 25.40

Global Load (B) 197M 266M 27M

Global Store (B) 11.7M 11.9M 10M

Replaced
global loads
with shared
loads

Total memory
requests
greatly
reducedMost global memory accesses already were

at shared-memory speed

40

ECE ILLINOIS

Scheduler Statistics
Pool of warps that the
scheduler can pick from.
Limited by device.

Number of warps actually
given to SM: not enough work,
or work imbalance

Number of warps ready to
execute: waiting for barrier,
watching for instruction fetch,
waiting for data…

Number of issued warps:
usually maximum of 1 or 2
depending on hardware.

Just because average value is
good, doesn’t mean warp
scheduling chances are
missed

41

ECE ILLINOIS 42

ECE ILLINOIS

Scheduler Statistics Comparison

Basic Tiled Joint

GFLOPS 1787 2585 6203

Theoretical Warps / Scheduler 16 16 16

Active Warps / Scheduler 15.7 15.71 8.7

Eligible Warps / Scheduler 3.92 2.60 2.17

Issued Warps / Scheduler 0.54 0.33 0.57

(See launch
statistics)

A warp is only
issued every
2-3 cycles for
all of these

43

ECE ILLINOIS

Warp State Statistics

Warp cycles per issued instructions:

latency between two consecutive

instructions

More latency: more warp parallelism

needed to hide

Warp State: average number of cycles

spent in that state for each instructions

Stalls cannot always be avoided and only

really matter if instructions can’t be

issued every cycle

mouse over to
see value

44

ECE ILLINOIS

Warp State Statistics

Description Basic Tiled Joint

GFLOPS 1787 2585 6203

Warp Cycles per Issued Instruction latency between two consecutive
instructions

29.21 47.32 15.36

Stall Long Scoreboard Waiting for local, global, texture, or
surface load

4.44 6.33 2.88

Stall Barrier Waiting at barrier 0 4.67 1.54

Stall MIO Throttle Waiting for MIO queue, caused by
loads (incl. shared), and special
math

0.01 22.74 1.43

Stall LG Throttle Waiting for load-store-unit queue
for local and global memory
instructions

11.83 1.79 0

Stall Not selected Eligible but not selected because
another eligible warp was

6.89 6.82 2.82

Replaces global with shared

Lower stalls across the
board, but fewer warps

45

ECE ILLINOIS

Section: Occupancy

Theoretical occupancy limited by device

hardware and launch configuration

Achieved occupancy: true number of

active warps as average

Lower if workload within or across blocks

is imbalanced, if there are too few blocks,

or the last wave is not large enough to fill

GPU

Charts show how resources affect

theoretical occupancy

46

ECE ILLINOIS

Waves

Assume: 1 block per SM, GPU with 4 SMs

8 blocks 5 blocks

wave 1

wave 2

High achieved occupancy Lower achieved occupancy

47

ECE ILLINOIS

Launch Statistics & Occupancy

Basic Tiled Joint

GFLOPS 1787 2585 6203

Theoretical Occupancy 100 100 75

Th. Active Warps per SM 64 64 48

Achieved Occupancy 97.76 98.34 53.93%

Waves per SM 13.81 13.81 1.18

Registers Per Thread 32 32 40

Last wave only 18% of needed warps
May not include registers for program counter!
Consult Nvidia’s architecture whitepapers.
Titan V uses 2 additional registers for PC.

48

ECE ILLINOIS

Instruction Hotspots

Show various metrics correlated with source

code lines and PTX instructions

Some source code lines create many many PTX

instructions: sometimes, split up a source line into

many lines to get more details

dst[i] = src[i] + reg;

vs

temp v = src[i];
v += reg;
dst[i] = v;

Switch page to “Source”

“Source and PTX” (usually) or “Source and SASS”
PTX: higher-level assembly, same between GPU models
SASS: specific code for a GPU model

49

ECE ILLINOIS

Instruction Hotspots

If profiling on a different system, source file may

not automatically load since paths may not

match.

Click “resolve” and find your local copy of the code that
was compiled or run remotely.

50

ECE ILLINOIS

Instruction Sampling

● Every so often, the position of the program counter is recorded
● Slower instructions are more likely to be recorded
● There will be many samples in slow parts of the code, and few in fast parts of the

code

51

ECE ILLINOIS

Click a line to
highlight lines from
other side

Program counter spends most of
its time on instructions from this
line. Mouse over for breakdown.

Corresponding PTX/SASS lines
over here.

Our basic matrix multiplication
spends most of its time loading
from global memory

Sometimes, stalls can show in a
following instruction that
depends on a previous one

52

System Profiling with Nsight Systems

53

ECE ILLINOIS

Nvidia Nsight Systems

● Deliver work to the GPU effectively
○ Understand performance of surrounding system

● Two interfaces:
○ GUI (nsight-sys)

○ CLI (nsys)

● Like Nsight Compute, use a two-part record-then-analyze flow with rai

Record data on target platform download Analyze data on client

nsys nsight-sys

54

ECE ILLINOIS

Example Files

● Two examples to discuss
● 2-5-pinned-joint / 2_5_pinned_joint.cu

○ Joint matrix-matrix multiplication with pinned memory

● 2-6-pinned-joint-overlap / 2_6_pinned_joint_overlap.cu
○ Joint matrix-matrix multiplication with pinned memory and data transfer overlap

● Unlike previous files, these time the end-to-end copy-kernel-copy
● Same two arguments

○ --iters (measured iterations, default 10)

○ --warmup (warmup iterations, default 5)

55

ECE ILLINOIS

Record kernel traces

$ nsys profile \
 -o 2-5-pinned-joint \
 2-5-pinned-joint

Create “2-5-pinned-basic.qdrep”

Name of the CUDA executable to profile

Do the same for 2-6-pinned-joint-overlap.

If you’re following along in rai, the rai_build.yml recipe does this for you
when you submit the sgemm folder to rai:

$ cd sgemm
$ rai -p .

56

ECE ILLINOIS

Nsight Systems

File > Open > file.qdrqp

Multiple files will be open, shown

on the left pane.

Main view is a timeline of OS calls,

CUDA calls, NVTX events, CUDA

API calls, and GPU activity.

Open all the .qdrep files from the

rai build directory you downloaded.

57

ECE ILLINOIS

Kernel Time vs Wall Time

CPU to GPU

GPU to CPU

GPU Activity

A

C = A * B

B

C

tkernel (Kernel Time)

th2d + tkernel + td2h (Wall Time)

t

th2d (Copy Time) td2h

58

ECE ILLINOIS

Click to expand

CPU activity

NVTX
annotations

GPU Activity

59

ECE ILLINOIS

Click and drag
to zoom in

Mouse over spans for
more info

60

ECE ILLINOIS

Real
Timeline

tkernel

th2d + tkernel + td2h

th2d td2h

61

ECE ILLINOIS

Overlap to Reduce Wall Time

A0

A1

B0 B1

C00 C01

C10 C11

● C = A * B as four multiplications.
○ C

00
 = A

0
 * B

0
: needs only A

0
, B

0

○ C
01

 = A
0

 * B
1

: after C
00

, needs only B
1

○ C
10

 = A
1

 * B
0

: after C
01

, needs only A
1

○ C
11

 = A
1

 * B
1

: immediately after C
10

● Copy slices of A and B onto GPU, and immediately

start the multiplication.

● Also can copy results back as soon as they’re ready

62

ECE ILLINOIS

Overlap to Reduce Wall Time

A0

A1

B0 B1

C00 C01

C10 C11

CPU to GPU

GPU to CPU

GPU Activity

A0

C00

B0

C10 C01 C11

A1 B1

th2d/2 + tkernel + td2h/4 (Wall Time)

63

ECE ILLINOIS

Real Timelines: Overlap
No overlap of transfer and kernel (3.5 ms)

Overlap of transfer and kernel! (2.5ms)

D2H and H2D transfers in the
same stream, so they are not
overlapped with each other

64

ECE ILLINOIS

Questions to Explore on your Own

● Compare 2-1-pageable-basic and 2-2-pinned-basic. What is the bandwidth of
the four different transfers (host-to-device and device-to-host with pageable or
pinned memory)?

● Consider 1-3-pinned-joint. Can you figure out how to improve the performance
of the kernel?

● Consider 2-4-pinned-tiled-overlap and 2-6-pinned-joint-overlap
○ Can you introduce a third stream to handle the device-to-host operations? Can they be

overlapped with host-to-device copies? Will this improve the overall end-to-end performance?

○ If you split it into nine submatrix multiplications, can you further improve the performance?

What about 16? Develop an algebraic expression to model the performance time for partitioning

into P2 submatrix multiplications.

65

ECE ILLINOIS

● Nsight Systems Documentation
○ https://docs.nvidia.com/nsight-systems/

● Nsight Compute Documentation
○ https://docs.nvidia.com/nsight-compute/

● Nvidia Developer Blog
○ Nsight Systems Exposes GPU Optimization (May 30 2018): https://devblogs.nvidia.com/nsight-systems-exposes-gpu-optimization/

○ Using Nsight Compute to Inspect your Kernels (Sep 16 2019): https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/

○ Using Nvidia Nsight Systems in Containers and the Cloud (Jan 29 2020) : https://devblogs.nvidia.com/nvidia-nsight-systems-containers-cloud/

● Workload Memory Analysis
○ CUDA Memory Model: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy

○ Device Memory Access Performance Guidelines: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses

● Stall Reasons
○ Nsight Graphics Docs: Stall Reasons: https://docs.nvidia.com/drive/drive_os_5.1.12.0L/nsight-graphics/activities/#shaderprofiler_stallreasons

○ Issue Efficiency Nsight Visual Studio Edition:

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/issueefficiency.htm

● Occupancy:
○ Nsight Visual Studio Edition:

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

Further Reading

66

https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/nsight-compute/
https://devblogs.nvidia.com/nsight-systems-exposes-gpu-optimization/
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/
https://devblogs.nvidia.com/nvidia-nsight-systems-containers-cloud/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses
https://docs.nvidia.com/drive/drive_os_5.1.12.0L/nsight-graphics/activities/#shaderprofiler_stallreasons
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/issueefficiency.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

ECE ILLINOIS

Not Discussed

● Measuring across multiple streams with CUDA events
● Profiling through the Nsight Compute GUI

○ local/remote

● Profiling through the Nsight Systems GUI
○ local/remote

● In-kernel timing with clock()/clock64()
● Custom profiling hooks with CUDA Performance Tools Interface (CUPTI)

67

Extra Slides

68

ECE ILLINOIS

License

Copyright 2020 Carl Pearson

Any material in these slides is just my own - Nvidia has not reviewed it.

The content of these slides may be reused or modified freely with attribution.

69

ECE ILLINOIS

Preparing for Profiling: Driver

Nvidia drivers disable profiling to prevent side-channel attacks.

You may see an error when you profile, and instructions to enable.

I will not provide instructions here, as this can break your system if done wrong.

70

ECE ILLINOIS

Roadmap

● SGEMM Comparison Slide
● Add Matrix Multiplication Parameters
● Server/Client Graphics
● Installing Nsight Systems and Nsight Compute

○ Linux / macOS / Windows / EWS

● Joint Matrix-Multiplication Explanation
● Definitions for Various Terms

○ Occupancy

○ Memory Hierarchy

○ Scheduling

○ cudaStreams, cudaEvents

● Description of Nsight Systems Timelines Rows

71

ECE ILLINOIS

Installing Nsight Systems GUI (macOS / Windows)

● macOS
○ You probably don’t have CUDA: download standalone Nsight Systems installer from Nvidia

website

● Windows with CUDA
○ Nsight Systems is already installed

○ To get a newer version, download the standalone installer.

○ If multiple versions are installed, you will have multiple entries in the start menu

● Windows without CUDA
○ Download the standalone installer from the Nvidia website

72

ECE ILLINOIS

Installing Nsight Systems (Illinois Linux EWS)

As of April 15, 2020.

EWS Runs Centos 7.7.

Download the Linux runfiles for Systems from the Nvidia website

ssh -Y <netid>@linux.ews.illinois.edu
chmod +x ././NVIDIA_Nsight_Systems_Linux_2020.2.1.71.run
./NVIDIA_Nsight_Systems_Linux_2020.2.1.71.run
Put the prefix as /home/pearson/nsight-systems-2020.2.1

Run as ./nsight-systems-2020.2.1/bin/nsight-sys &

73

ECE ILLINOIS

Installing Nsight Compute (Illinois Linux EWS)

As of April 15, 2020.

EWS Runs Centos 7.7, has cuda 10, and an old version of Nsight Compute in

/software/cuda-10/Nsight-Compute-1.0. To update:

Download the Linux runfiles for Compute

ssh -Y <netid>@linux.ews.illinois.edu

chmod +x ./nsight-compute-linux-2019.5.0.14-27346997.run

./nsight-compute-linux-2019.5.0.14-27346997.run

Put the prefix as /home/netid/NVIDIA-Nsight-Compute-2019.5

Do not try to put a symlink at /usr/…

This does not launch

74

ECE ILLINOIS

Installing Nsight Systems GUI (Linux)

● Linux with CUDA
○ May already be present: /usr/local/cuda/bin/nv-nsight-cu

● Linux without root
○ Download the run file, and give it a prefix in a directory of your choice

○ Update your path to include the install location

● Linux with root
○ runfile: Download the runfile, be aware it may overwrite CUDA’s installation

○ package: Download and install the package. Your OS may automatically handle the default

version that will run. Be aware of which version you run.

75

