Node-Aware Stencil Communication on Heterogeneous Supercomputers

Carl Pearson¹, Mert Hidayetoglu¹, Mohammad Almasri¹, Omer Anjum¹, I-Hsin Chung², Jinjun Xiong², Wen-Mei Hwu¹ ¹University of Illinois Electrical and Computer Engineering ²IBM T. J. Watson Research May 22 2020

ILLINOIS Electrical & Computer Engineering grainger college of engineering

Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University of Illinois Urbana-Champaign

- Advised by Professor Wen-Mei Hwu
- (Multi-)GPU communication
- Accelerating irregular applications
- cwpearson
- in cwpearson
- 💌 pearson at illinois.edu
- https://cwpearson.github.io

Outline

- Motivation
- Distributed Stencil & Glossary
- Parallelism
- Placement
- Primitives
- Future Work
- This talk: https://github.com/cwpearson/stencil

Single-Hop GPU Bandwidth

cudaMemcpyPeerAsync: GPU 0 and 1

Bidirectional transfers double bandwidth

Multi-Hop Bandwidth

Summit Node (bidirectional bandwidth)

Bidirectional transfers are even slower

Distributed Stencils & Heterogeneous Nodes

- Finite Difference Methods
- Regular computation, access, and structure reuse → stencil on GPU
- High-resolution modeling → Large stencils
- Limited GPU memory → distributed stencils with communication
- Fast stencil codes → larger impact of communication
- Heterogeneous nodes ("fat nodes") → how to do communication
- Performance impact of the on-node optimizations
- Packaging this so science people don't need to be GPU communications people too

Approach

Parallelism	Scalable decomposition	Subdomain decomposition to minimize communication
Placement	Assign tasks according to theoretical performance	Node-aware placement to utilize interconnections
<u>Primitives</u>	Achieve theoretical performance	Asynchronous operations Communication specialization

Decomposition - Minimize Required Comm.

Intuition: less halo-to-interior ratio means less communication

Decomposition - Recursive Inertial Bisection

- Divide given domain into *P* subdomains
- Generate sorted prime factors, largest to smallest.
 - Evenly-sized subdomain require dividing by integers.
 - Fundamental Theorem of Arithmetic
 - Most opportunity to divide into cubical subdomains

- Divide the longest dimension by prime factors
 - subdomains tend towards cubical
 - use smaller prime factors later to clean up

Hierarchical Decomposition

Placement

How to place subdomains on GPUs to maximize bandwidth utilization?

Quadratic Assignment Problem

n facilities with "flow" between them. *n* locations with "distance" between them. Assign facilities to locations while minimizing total flow-distance product. Facilities with a lot of flow should be close.

 $\sum_{j,j < n} w_{i,j} d_{f(i),f(j)}$

	Abstract	<u>Concrete</u>
w, w _{i,j}	Matrix of "flow" between facilities <i>i</i> and <i>j</i> .	subdomain communication amount
d, d _{i,j}	Matrix of "distance" between locations <i>i</i> and <i>j</i> .	GPU distance matrix
f	$n \rightarrow n$ bijection assigning facilities to locations	n vector

Example Placement

Node-Aware Placement

20% reduced exchange time from placement alone

Another Placement

Capability Specialization Primitives

Achieve best use of bandwidth, regardless of ranks/node and GPUs/rank

- "Staged": works for any 2 GPUs anywhere
 - \circ pack from device 3D region into device 1D buffer
 - \circ copy from device 1D buffer to host 1D buffer
 - \circ MPI_Isend / MPI_Irecv to other host 1D buffer
 - \circ copy from host 1D buffer to device 1D buffer
 - \circ unpack from device 1D buffer to device 3D buffer

Optimizations are node-aware shortcuts on top of this

Pack and Unpack

CUDA-Aware MPI

Same as the staged, but MPI responsible for getting data between GPUs

Colocated

Exchange between different ranks on the same node Different ranks are different processes with different address spaces Use cudaIpc* to move a pointer between ranks, then cudaMemcpy*

ECE ILLINOIS 18

Peer- and Self-exchange

Peer: Two GPUs in the same rank

Self: Same GPU is on both sides of the domain Only if decomposition has extent=1 in any direction

Overlap

All operations are parallel and asynchronous

May be able to trade off kernel time with communication time by storing halos in a packed configuration

1 Node (Summit)

Specialization has a big impact in intra-node performance

Weak Scaling (Summit)

Non-CUDA-aware MPI

CUDA-aware MPI

Exchange time stabilizes once most nodes have 26 neighbors Specialization has a smaller impact on off-node performance (1.16x at 256 nodes) CUDA-aware causes poor scaling

Implementation - CUDA/C++ Header-only Library

https://github.com/cwpearson/stencil

Fast stencil exchange for any configuration of CUDA + MPI

Support for any combination of quantity types (float, double)

"Patch-based" approach, for integrating existing GPU kernels

Takeaways so Far

- Use (at least) one rank per GPU to maximize MPI injection bandwidth
- Data placement was good for 20% performance for one node
- Communication specialization was good for 6x on one node
 - still 1.16x at 256 nodes allows MPI to just do off-node
- CUDA-Aware MPI seems like a proof-of-concept right now
- Some opportunities to improve partitioning and placement according to node topology

Future Directions (1/N)

Example Node-Aware Partition

Consider 2 different partitions for target platform

Platform properties determine best partition, not just best placement

All Pack Directions not Equal

Not all communication directions have same performance on same link. Pack / Unpack performance depends on strides

unpack is 2-3x slower than pack for non-contiguous regions

Future Directions

Conclusion

- Careful measurement as a foundation for performance
- Examining the impact of heterogeneous communication performance
- Making successful approaches available through a library
- Algorithm-level communication performance is impacted by the system
 - Generalize to other applications?
 - Integrate with an existing task/placement/execution system

Thank you - Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University of Illinois Urbana-Champaign

- (Multi-)GPU communication
- Accelerating irregular applications
- cwpearson

- cwpearson
- 🛛 pearson at illinois.edu
- <u>https://cwpearson.github.io</u>

Extra Slides

Abstract

High-performance distributed computing systems increasingly feature nodes that have multiple CPU sockets and multiple GPUs. The communication bandwidth between those components depends on the underlying hardware and system software. Consequently, the bandwidth between these components is non-uniform, and these systems can expose different communication capabilities between these components. Optimally using these capabilities is challenging and essential consideration on emerging architectures. This talk starts by describing the performance of different CPU-GPU and GPU-GPU communication methods on nodes with high-bandwidth NVLink interconnects. This foundation is then used for domain partitioning, data placement, and communication planning in a CUDA+MPI 3D stencil halo exchange library.

