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Outline

● Motivation
● Distributed Stencil & Glossary
● Parallelism
● Placement
● Primitives
● Future Work
● This talk: https://github.com/cwpearson/stencil

3



ECE ILLINOIS

Single-Hop GPU Bandwidth

Bidirectional transfers double bandwidth
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Multi-Hop Bandwidth

Bidirectional transfers are even slower
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Distributed Stencils & Heterogeneous Nodes

● Finite Difference Methods
● Regular computation, access, and structure reuse ➡ stencil on GPU
● High-resolution modeling ➡ Large stencils
● Limited GPU memory ➡ distributed stencils with communication
● Fast stencil codes ➡ larger impact of communication
● Heterogeneous nodes (“fat nodes”) ➡ how to do communication

● Performance impact of the on-node optimizations
● Packaging this so science people don’t need to be GPU communications people 

too
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Stencil Glossary
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Approach
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Parallelism

Placement

Primitives Asynchronous operations
Communication specialization

Assign tasks according to 
theoretical performance

Achieve theoretical 
performance

Node-aware placement to 
utilize interconnections

Subdomain decomposition to 
minimize communication

Scalable decomposition
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Decomposition - Minimize Required Comm.
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Intuition: less halo-to-interior ratio means less communication



ECE ILLINOIS

Decomposition - Recursive Inertial Bisection
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● Divide given domain into P subdomains

● Generate sorted prime factors, largest  to 
smallest.

○ Evenly-sized subdomain require dividing by integers.

○ Fundamental Theorem of Arithmetic

○ Most opportunity to divide into cubical subdomains

● Divide the longest dimension by prime factors
○ subdomains tend towards cubical

○ use smaller prime factors later to clean up

prime_factors

sort

P

sorted prime 
factors

next 
factor divide 

longest 
dimension
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Hierarchical Decomposition
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Minimize Communication Out of Node Minimize communication between GPUs
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Placement

How to place subdomains on GPUs to maximize bandwidth utilization?
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Quadratic Assignment Problem
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Abstract Concrete

w, wi,j Matrix of “flow” between facilities i and j. subdomain communication 
amount

d, di,j Matrix of “distance” between locations i and j. GPU distance matrix

f n → n bijection assigning facilities to locations n vector

n facilities with “flow” between them.
n locations with “distance” between them.
Assign facilities to locations while minimizing total flow-distance product.
Facilities with a lot of flow should be close.
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Example Placement

14

[0, 0, 0]

[0, 1, 0]

[0, 2, 0] [1, 2, 0]

[1, 1, 0]

[1, 0, 0]

Node-Aware Placement Another Placement

[0, 0, 0]

[0, 1, 0]

[0, 2, 0]

[1, 2, 0]

[1, 1, 0]

[1, 0, 0]

gpu 1

gpu 2 gpu 5

gpu 4

P9

V100

V100

V100

P9

V100

V100

V100

20% reduced exchange time 
from placement alone

gpu 0 gpu 3
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Capability Specialization Primitives

Achieve best use of bandwidth, regardless of 
ranks/node and GPUs/rank

● “Staged”: works for any 2 GPUs anywhere
○ pack from device 3D region into device 1D buffer

○ copy from device 1D buffer to host 1D buffer

○ MPI_Isend / MPI_Irecv to other host 1D buffer

○ copy from host 1D buffer to device 1D buffer

○ unpack from device 1D buffer to device 3D buffer

Optimizations are node-aware shortcuts on top of this
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Pack and Unpack
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CUDA-Aware MPI
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Same as the staged, but MPI responsible for getting data between GPUs
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Colocated
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Exchange between different ranks on the same node
Different ranks are different processes with different address spaces
Use cudaIpc* to move a pointer between ranks, then cudaMemcpy*
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Peer- and Self-exchange
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Peer: Two GPUs in the same rank Self: Same GPU is on both sides of the domain
Only if decomposition has extent=1 in any direction 
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Overlap
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U

SPeer: GPU 0 to GPU 2

SMPI

SMPIP

P

P

U

P SPeer: GPU 2 to GPU 0

P SMPI

P SMPI

T T

T T

another rank

another rank

W

another rank

another rank

t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0 t = 1.9

GPU 0

GPU 2

CPU CPU Time

U

U

U
U

Rank A
Timeline (ms)

W

W

W

P: Pack a halo region into a GPU buffer
U: Unpack a GPU buffer into a halo region
T: Translate from compute domain into halo region on the same GPU
W    : Wait for a packed message from another rank
SPeer: Peer send between two GPUs on the same MPI rank
SMPI: Send to a GPU on a different rank using MPI

All operations are parallel and asynchronous
May be able to trade off kernel time with communication time by storing halos in a packed configuration
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1 Node (Summit)

An/Br/Cg/N

A nodes

B ranks per node

C GPUs per node

N: total domain size is N3

remote: staged or CUDA-Aware only

+colo: “remote” + colocated communicators

+peer: “+colo” + peer communicator

+kernel: “+peer” + self communicator
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6x

Specialization has a big impact in intra-node performance

More ppn = parallel MPI operations
More ppn = opportunity for colocated
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Weak Scaling (Summit)
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Exchange time stabilizes once most nodes have 26 neighbors
Specialization has a smaller impact on off-node performance (1.16x at 256 nodes)

CUDA-aware causes poor scaling

Non-CUDA-aware MPI CUDA-aware MPI

1.16x
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Implementation - CUDA/C++ Header-only Library

https://github.com/cwpearson/stencil

Fast stencil exchange for any configuration of CUDA + MPI

Support for any combination of quantity types (float, double)

“Patch-based” approach, for integrating existing GPU kernels
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https://github.com/cwpearson/stencil
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Takeaways so Far

● Use (at least) one rank per GPU to maximize MPI injection bandwidth
● Data placement was good for 20% performance for one node
● Communication specialization was good for 6x on one node

○ still 1.16x at 256 nodes - allows MPI to just do off-node

● CUDA-Aware MPI seems like a proof-of-concept right now
● Some opportunities to improve partitioning and placement according to node 

topology
●
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Future Directions (1/N)
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Parallelism

Placement

Primitives Asynchronous operations
Communication specialization

Assign tasks according to 
theoretical performance

Achieve theoretical 
performance

Node-aware placement to 
utilize interconnections

Subdomain decomposition to 
minimize communication

Scalable decomposition

Minimizing communication may not 
maximize performance. Both 

decomposition and placement informed by 
system
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Example Node-Aware Partition
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4n
n

~n

~n

~n

GPU 0 GPU 2

GPU 1 GPU 3

1 GB/s

10 GB/s

~n/2

~2n

~n/2

~2n

Total: 3n
Time: n / 1GB/s

Total: 5n
Time: n / 2 / 1GB/s

Consider 2 different partitions for 
target platform

Platform properties determine best partition, 
not just best placement
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All Pack Directions not Equal 

Not all communication directions have same performance on same link.
Pack / Unpack performance depends on strides
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warp size = 8, 
4x4 block 

coalesced writes coalesced reads

partially-coalesced 
writes

partially-coalesced 
reads

unpack is 2-3x slower than pack for non-contiguous regions

pack unpack

copy
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Future Directions
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Task Graph
vertices: computation

edges: communication

Placement
performance, power, 

contention, ...

System Graph
vertices: PEs

edges: interconnects

Execution
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Future Directions
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Task Graph
vertices: computation

edges: communication

Placement
performance, power, 

contention, ...

System Graph
vertices: PEs

edges: interconnects

Creation
Better eventual 

placement

Execution

● Using Legion programming system 
as a platform

○ Improving model of system
○ Techniques for 

communication-aware 
placement, incl. SMT solvers
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Conclusion

● Careful measurement as a foundation for performance
● Examining the impact of heterogeneous communication performance
● Making successful approaches available through a library
● Algorithm-level communication performance is impacted by the system

○ Generalize to other applications?

○ Integrate with an existing task/placement/execution system

30



ECE ILLINOIS

Thank you - Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University 
of Illinois Urbana-Champaign

● (Multi-)GPU communication
● Accelerating irregular applications

cwpearson

cwpearson
pearson at illinois.edu
https://cwpearson.github.io

31

https://cwpearson.github.io


Extra Slides

32



ECE ILLINOIS

Abstract

High-performance distributed computing systems increasingly feature nodes that have multiple CPU 

sockets and multiple GPUs. The communication bandwidth between those components depends on the 

underlying hardware and system software. Consequently, the bandwidth between these components is 

non-uniform, and these systems can expose different communication capabilities between these 

components. Optimally using these capabilities is challenging and essential consideration on emerging 

architectures. This talk starts by describing the performance of different CPU-GPU and GPU-GPU 

communication methods on nodes with high-bandwidth NVLink interconnects. This foundation is then used 

for domain partitioning, data placement, and communication planning in a CUDA+MPI 3D stencil halo 

exchange library.
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