
Node-Aware Stencil Communication on Heterogeneous Supercomputers
Carl Pearson1, Mert Hidayetoglu1, Mohammad Almasri1, Omer Anjum1, I-Hsin Chung2, Jinjun Xiong2, Wen-Mei Hwu1

1University of Illinois Electrical and Computer Engineering
2IBM T. J. Watson Research
May 22 2020

ECE ILLINOIS

Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University
of Illinois Urbana-Champaign

● Advised by Professor Wen-Mei Hwu
● (Multi-)GPU communication
● Accelerating irregular applications

cwpearson
cwpearson
pearson at illinois.edu
https://cwpearson.github.io

2

https://cwpearson.github.io

ECE ILLINOIS

Outline

● Motivation
● Distributed Stencil & Glossary
● Parallelism
● Placement
● Primitives
● Future Work
● This talk: https://github.com/cwpearson/stencil

3

ECE ILLINOIS

Single-Hop GPU Bandwidth

Bidirectional transfers double bandwidth

43.8 GB/s

87.5 BG/s

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

4

31.4 GB/s

ECE ILLINOIS

Multi-Hop Bandwidth

Bidirectional transfers are even slower

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

5

43.8 GB/s

87.5 GB/s

31.4 GB/s

25.8 GB/s
22.3 GB/s

ECE ILLINOIS

Distributed Stencils & Heterogeneous Nodes

● Finite Difference Methods
● Regular computation, access, and structure reuse ➡ stencil on GPU
● High-resolution modeling ➡ Large stencils
● Limited GPU memory ➡ distributed stencils with communication
● Fast stencil codes ➡ larger impact of communication
● Heterogeneous nodes (“fat nodes”) ➡ how to do communication

● Performance impact of the on-node optimizations
● Packaging this so science people don’t need to be GPU communications people

too

6

ECE ILLINOIS

Stencil Glossary

7

Domain

Subdomains

interior

halor

1
2

1

2

2

1 2

r = 2

r = 1

“corner”“edge”

multiple
quantities per

subdomain

ECE ILLINOIS

Approach

8

Parallelism

Placement

Primitives Asynchronous operations
Communication specialization

Assign tasks according to
theoretical performance

Achieve theoretical
performance

Node-aware placement to
utilize interconnections

Subdomain decomposition to
minimize communication

Scalable decomposition

ECE ILLINOIS

Decomposition - Minimize Required Comm.

9

Intuition: less halo-to-interior ratio means less communication

ECE ILLINOIS

Decomposition - Recursive Inertial Bisection

10

● Divide given domain into P subdomains

● Generate sorted prime factors, largest to
smallest.

○ Evenly-sized subdomain require dividing by integers.

○ Fundamental Theorem of Arithmetic

○ Most opportunity to divide into cubical subdomains

● Divide the longest dimension by prime factors
○ subdomains tend towards cubical

○ use smaller prime factors later to clean up

prime_factors

sort

P

sorted prime
factors

next
factor divide

longest
dimension

ECE ILLINOIS

Hierarchical Decomposition

11

Minimize Communication Out of Node Minimize communication between GPUs

ECE ILLINOIS

Placement

How to place subdomains on GPUs to maximize bandwidth utilization?

12

ECE ILLINOIS

Quadratic Assignment Problem

13

Abstract Concrete

w, wi,j Matrix of “flow” between facilities i and j. subdomain communication
amount

d, di,j Matrix of “distance” between locations i and j. GPU distance matrix

f n → n bijection assigning facilities to locations n vector

n facilities with “flow” between them.
n locations with “distance” between them.
Assign facilities to locations while minimizing total flow-distance product.
Facilities with a lot of flow should be close.

ECE ILLINOIS

Example Placement

14

[0, 0, 0]

[0, 1, 0]

[0, 2, 0] [1, 2, 0]

[1, 1, 0]

[1, 0, 0]

Node-Aware Placement Another Placement

[0, 0, 0]

[0, 1, 0]

[0, 2, 0]

[1, 2, 0]

[1, 1, 0]

[1, 0, 0]

gpu 1

gpu 2 gpu 5

gpu 4

P9

V100

V100

V100

P9

V100

V100

V100

20% reduced exchange time
from placement alone

gpu 0 gpu 3

ECE ILLINOIS

Capability Specialization Primitives

Achieve best use of bandwidth, regardless of
ranks/node and GPUs/rank

● “Staged”: works for any 2 GPUs anywhere
○ pack from device 3D region into device 1D buffer

○ copy from device 1D buffer to host 1D buffer

○ MPI_Isend / MPI_Irecv to other host 1D buffer

○ copy from host 1D buffer to device 1D buffer

○ unpack from device 1D buffer to device 3D buffer

Optimizations are node-aware shortcuts on top of this

15

ECE ILLINOIS

Pack and Unpack

16

x

y

z

a

b

c

a
a * b

...

a * b * c

3D View Actual Memory Layout

Packed Layout

ECE ILLINOIS

CUDA-Aware MPI

17

Same as the staged, but MPI responsible for getting data between GPUs

ECE ILLINOIS

Colocated

18

Exchange between different ranks on the same node
Different ranks are different processes with different address spaces
Use cudaIpc* to move a pointer between ranks, then cudaMemcpy*

ECE ILLINOIS

Peer- and Self-exchange

19

Peer: Two GPUs in the same rank Self: Same GPU is on both sides of the domain
Only if decomposition has extent=1 in any direction

ECE ILLINOIS

Overlap

20

U

SPeer: GPU 0 to GPU 2

SMPI

SMPIP

P

P

U

P SPeer: GPU 2 to GPU 0

P SMPI

P SMPI

T T

T T

another rank

another rank

W

another rank

another rank

t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0 t = 1.9

GPU 0

GPU 2

CPU CPU Time

U

U

U
U

Rank A
Timeline (ms)

W

W

W

P: Pack a halo region into a GPU buffer
U: Unpack a GPU buffer into a halo region
T: Translate from compute domain into halo region on the same GPU
W : Wait for a packed message from another rank
SPeer: Peer send between two GPUs on the same MPI rank
SMPI: Send to a GPU on a different rank using MPI

All operations are parallel and asynchronous
May be able to trade off kernel time with communication time by storing halos in a packed configuration

ECE ILLINOIS

1 Node (Summit)

An/Br/Cg/N

A nodes

B ranks per node

C GPUs per node

N: total domain size is N3

remote: staged or CUDA-Aware only

+colo: “remote” + colocated communicators

+peer: “+colo” + peer communicator

+kernel: “+peer” + self communicator

21

6x

Specialization has a big impact in intra-node performance

More ppn = parallel MPI operations
More ppn = opportunity for colocated

ECE ILLINOIS

Weak Scaling (Summit)

22

Exchange time stabilizes once most nodes have 26 neighbors
Specialization has a smaller impact on off-node performance (1.16x at 256 nodes)

CUDA-aware causes poor scaling

Non-CUDA-aware MPI CUDA-aware MPI

1.16x

ECE ILLINOIS

Implementation - CUDA/C++ Header-only Library

https://github.com/cwpearson/stencil

Fast stencil exchange for any configuration of CUDA + MPI

Support for any combination of quantity types (float, double)

“Patch-based” approach, for integrating existing GPU kernels

23

https://github.com/cwpearson/stencil

ECE ILLINOIS

Takeaways so Far

● Use (at least) one rank per GPU to maximize MPI injection bandwidth
● Data placement was good for 20% performance for one node
● Communication specialization was good for 6x on one node

○ still 1.16x at 256 nodes - allows MPI to just do off-node

● CUDA-Aware MPI seems like a proof-of-concept right now
● Some opportunities to improve partitioning and placement according to node

topology
●

24

ECE ILLINOIS

Future Directions (1/N)

25

Parallelism

Placement

Primitives Asynchronous operations
Communication specialization

Assign tasks according to
theoretical performance

Achieve theoretical
performance

Node-aware placement to
utilize interconnections

Subdomain decomposition to
minimize communication

Scalable decomposition

Minimizing communication may not
maximize performance. Both

decomposition and placement informed by
system

ECE ILLINOIS

Example Node-Aware Partition

26

4n
n

~n

~n

~n

GPU 0 GPU 2

GPU 1 GPU 3

1 GB/s

10 GB/s

~n/2

~2n

~n/2

~2n

Total: 3n
Time: n / 1GB/s

Total: 5n
Time: n / 2 / 1GB/s

Consider 2 different partitions for
target platform

Platform properties determine best partition,
not just best placement

ECE ILLINOIS

All Pack Directions not Equal

Not all communication directions have same performance on same link.
Pack / Unpack performance depends on strides

27

warp size = 8,
4x4 block

coalesced writes coalesced reads

partially-coalesced
writes

partially-coalesced
reads

unpack is 2-3x slower than pack for non-contiguous regions

pack unpack

copy

ECE ILLINOIS

Future Directions

28

Task Graph
vertices: computation

edges: communication

Placement
performance, power,

contention, ...

System Graph
vertices: PEs

edges: interconnects

Execution

ECE ILLINOIS

Future Directions

29

Task Graph
vertices: computation

edges: communication

Placement
performance, power,

contention, ...

System Graph
vertices: PEs

edges: interconnects

Creation
Better eventual

placement

Execution

● Using Legion programming system
as a platform

○ Improving model of system
○ Techniques for

communication-aware
placement, incl. SMT solvers

ECE ILLINOIS

Conclusion

● Careful measurement as a foundation for performance
● Examining the impact of heterogeneous communication performance
● Making successful approaches available through a library
● Algorithm-level communication performance is impacted by the system

○ Generalize to other applications?

○ Integrate with an existing task/placement/execution system

30

ECE ILLINOIS

Thank you - Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University
of Illinois Urbana-Champaign

● (Multi-)GPU communication
● Accelerating irregular applications

cwpearson

cwpearson
pearson at illinois.edu
https://cwpearson.github.io

31

https://cwpearson.github.io

Extra Slides

32

ECE ILLINOIS

Abstract

High-performance distributed computing systems increasingly feature nodes that have multiple CPU

sockets and multiple GPUs. The communication bandwidth between those components depends on the

underlying hardware and system software. Consequently, the bandwidth between these components is

non-uniform, and these systems can expose different communication capabilities between these

components. Optimally using these capabilities is challenging and essential consideration on emerging

architectures. This talk starts by describing the performance of different CPU-GPU and GPU-GPU

communication methods on nodes with high-bandwidth NVLink interconnects. This foundation is then used

for domain partitioning, data placement, and communication planning in a CUDA+MPI 3D stencil halo

exchange library.

33

