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Abstract—This paper presents GPU performance optimization
and scaling results for inference models of the Sparse Deep
Neural Network Challenge 2020. Demands for network quality
have increased rapidly, pushing the size and thus the memory
requirements of many neural networks beyond the capacity of
available accelerators. Sparse deep neural networks (SpDNN)
have shown promise for reining in the memory footprint of large
neural networks. However, there is room for improvement in
implementing SpDNN operations on GPUs. This work presents
optimized sparse matrix multiplication kernels fused with the
ReLU function. The optimized kernels reuse input feature maps
from the shared memory and sparse weights from registers. For
multi-GPU parallelism, our SpDNN implementation duplicates
weights and statically partition the feature maps across GPUs.
Results for the challenge benchmarks show that the proposed
kernel design and multi-GPU parallelization achieve up to 180
TeraEdges per second inference throughput. These results are
up to 4.3× faster for a single GPU and an order of magnitude
faster at full scale than those of the champion of the 2019 Sparse
Deep Neural Network Graph Challenge for the same generation
of NVIDIA V100 GPUs. Using the same implementation1, we also
show single-GPU throughput on NVIDIA A100 is 2.37× faster
than V100.

I. INTRODUCTION

Deep learning (DL) has seen great progress over the last
decade and demonstrated substantial accuracy improvement
over a range of machine learning tasks such as image clas-
sification [1], object recognition [2], language modeling [3],
[4], and language translation [5]. Scaling up DL models along
with increased amount of training data have proven to be
an effective approach to improve the model accuracy [3],
[4], [6]. The progress of DL applications involves not only
the algorithmic improvements, but also the unprecedented
computational throughput provided by GPUs.

On several machine learning tasks, the size of state-of-
the-art deep neural networks (DNN) has grown beyond the
memory limits of available accelerators [3], [6]. To address
this, the DL community has taken an algorithmic approach of
sparsifying the DNN using techniques such as pruning [7]–[9].
These optimization convert a dense DNN into a sparse DNN.

Sparse DNNs present unique scalablity challenges. Real-
izing this, in 2019 MIT/IEEE/Amazon proposed the Sparse
DNN Challenge as an extension to the Graph Challenge [10]–
[14]. The Sparse DNN Challenge is created by leveraging the

1Our code is open-source at https://github.com/merthidayetoglu/SpDNN
Challenge2020

collective knowledge of machine learning, high-performance
computing and graph analytics communities on emerging AI
systems. The objective of the Sparse DNN Challenge is to
build scalable algorithms and systems for sparse AI analytics.

The Sparse DNN Challenge provides model structure,
trained model weights, and inputs as a foundation for com-
parison of inference performance. Several models with varying
number of layers (120 to 1920 layers) and neuron connections
(4 Million to 4 Billion) are posted in the challenge. Such
a large variation allows system and algorithm designers to
evaluate efficient, scalable implementations against a variety
of network types.

In this work, we propose efficient sparse algorithms and
demonstrate performant kernel implementations for sparse
DNN inference on GPUs. GPUs have become a de-facto ac-
celerator for DNN computation. However, traditionally GPUs
are designed for dense DNN operations and their performance
is considerably reduced for sparse DNN computations. Using
a baseline sparse DNN implementation, we identify the causes
of performance bottlenecks. In our baseline implementation,
we store the weights as sparse matrices in the compressed
sparse row (CSR) storage format while the inputs are rep-
resented as dense matrices in the column-major data layout
in memory. We observe that irregular memory accesses to the
input matrix and redundant accesses to the weight matrices are
the primary causes for inefficiency in the naive sparse DNN
implementation.

To address this, we propose a few optimizations, namely,
register tiling, shared-memory tiling, and compact index repre-
sentation to create optimized kernel implementation fused with
ReLU activation for sparse DNN inference. In the optimized
fused kernel, the weights are stored in sliced ELLPACK format
for efficient memory access while the inputs are retained in the
column-major layout in memory. Together these optimizations
minimize the total number of irregular memory access and
redundant access to the global memory, thus providing signif-
icant performance improvements. Although variants of these
optimizations have been applied in sparse matrix mutiplication
(SpMM) kernels [15] [16], in this work we tune them for
sparse DNN computation.

Our evaluation shows, compared to the baseline fused kernel
implementation, the optimized fused kernel provides up to
11.84× speedup. Overall, the proposed optimizations achieve
up to 14.30 TeraEdges, i.e., 1012 edges, per second perfor-

1

ar
X

iv
:2

00
7.

14
15

2v
2 

 [
cs

.D
C

] 
 2

 S
ep

 2
02

0

https://github.com/merthidayetoglu/SpDNN_Challenge2020
https://github.com/merthidayetoglu/SpDNN_Challenge2020


mance on a single V100 GPU. Compared with prior champi-
ons, our single GPU implementation on the same generation
of NVIDIA Volta V100 GPU is up to 4.3× faster. Compared
to an implementation based off of NVIDIA’s cuSPARSE, our
proposed kernels can provide 200× speedup. In addition, we
evaluate the performance of our optimized fused kernel on the
latest generation NVIDIA Ampere A100 GPU, and show that
out-of-the-box execution of our optimized kernel achieves up
to 20.99 TeraEdges per second (2.37× faster than V100 GPU).

To measure the algorithm scalablity, we perform strong scal-
ing using batch parallelism and scale up to 768 V100 GPUs on
department of energy’s Summit supercomputer at Oak Ridge
National Laboratory [17]. On a single node, when the number
of V100 GPUs are increased from one to six, optimized fused
kernel achieves up to 5.37× speedup, and thus providing a
scaling efficiency of 89.5%. Our evaluation shows that, our
proposed implementation can provide up to 51.8× speed up
when the number of GPUs is increased to 768 (or 128 nodes
with 6 GPUs in each node) compared to the single V100 GPU
implementation. Compared to 2019 Sparse DNN Champions,
our scale-out implementation is 3.25–19.13× faster, providing
up to 180 TeraEdges per second.

Overall, we make the following main contributions:
1) We present novel fused SpMM kernel design that is op-

timized for providing data reuse during DNN inference.
2) We perform extensive at-scale benchmarking on up to

768 V100 GPUs as well as the new A100 GPUs for the
Sparse Deep Neural Network Challenge dataset.

II. BACKGROUND & MOTIVATION

In this section, we provide a brief overview of the Sparse
DNN Challenge and discuss the limitations in naive sparse
DNN inference implementation.

A. Overview of Sparse DNN Challenge

The Sparse DNN Challenge specifies a collection of large
sparse DNNs models [10], [11] that are representative of the
latest trends in addressing challenging machine learning tasks.
The challenge provides model structure (number of layers and
size of layer), and model weights for computing sparse DNN
inference on a given input dataset.

1) Formulation of Sparse Layer: For a sparse DNN with
L layers, each sparse layer computation can be formulated as

Y l+1 = ReLU(W l × Y l +B) (1)

where l is the layer number, Y l and Y l+1 are N×M matrices
of M input and output features of length N , respectively,
stored in column-major format, W l is an N × N matrix of
activation weights, Bl is an N×M bias matrix for each output,
and ReLU is the activation function. Here, ReLU activation
function promotes sparsity and is defined as ReLU(x) =
max{0,min{x, 32}}. The weight matrix represents a general
pattern of neuron connections: for a fully-connected layer, W l

would be entirely non-zero, for a convolution layer, W l would
be banded, and for a general sparse layer, W l is a general
sparse matrix.

2) Steps Involved in Sparse DNN Challenge: Algorithm 1
describes the high-level steps involved in computing sparse
DNN inference in the Sparse DNN Challenge [10], [18]. The
challenge provides datasets comprising of input data for the
neural network, weights for each layer in the network, bias
values for each layer and finaly the ground truth to validate if
the results are correct while computing inference.

Algorithm 1 Outline of Sparse DNN Challenge Algorithm

1: Read input Y 0 and model weights (W 0,W 1 ... WL−1)
from binary files

2: Initialize bias vector B with a constant
3: Evaluate Equation (1) for all the layers, starting from l = 0

and until l = L− 1
4: Use Y L−1 to determine categories and compare with the

ground truth.
5: Measure and report performance

The input to the neural network is an interpolated sparse ver-
sion derived from the MNIST dataset and consists of 60,000
images stored in TSV format. Each of the MNIST 28×28
pixel images are resized to 32×32 (1024 neurons), 64×64
(4096 neurons), 128×128 (16384 neurons) and 256×256
(65536 neurons) pixels. All resized images are thresholded to
ensure values reside between 0 to 1. Then, they are linearized
and stacked together to obtain 60k1K, 60k4K, 60k16K, and
60k64K input feature matrices. This allows to store each image
in a single row in the TSV while each column representing
a non-zero pixel location with a value of 1. The challenge
also provides three different sparse DNN models comprising
of 120, 480, and 1920 layers. Thus effectively creates a total
of 12 DNNs ({1024, 4096, 16384, 65536} neurons × {120,
480, 1920} layers), publicly available [19].

Since such large sparse DNN networks are not publicly
available, the challenge generates the weight matrix using
RadiX-Net synthetic sparse DNN generator [8]. The synthetic
generator is capable of creating pre-determined DNNs with
32 connections per neuron and ensuring there exists an equal
number of paths between inputs and intermediate layers. All
neurons have weights and biases set to 1/16. However, our
kernel design and implementation could work on real-life data
with any arbitrary bias values and any sparse layer with an
arbitrary sparsity pattern.

B. The Baseline GPU Implementation

We present a baseline implementation of sparse DNN using
GPUs and discuss the bottlenecks to motivate our optimiza-
tions. The baseline implementation consists a sparse×dense
SpMM kernel fused with ReLU function for GPU execution.
In this implementation, shown in Listing 1, each thread pro-
duces a single output element in Y l+1, and gathers data from
the corresponding column of Yl. Each thread reads a row of
windex (column indices of non-zero weight elements in the
CSR format) and wvalue (the value of the non-zero weight
elements) from sparse W l matrix stored in CSR format, as
depicted in Figure 1. Note that windex and wvalue have
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the same layout and access patterns so we omitted wvalue
from Figure 1. Also, each wdispl element gives the starting
location of its corresponding row of non-zero elements in the
CSR format. That is, all windex elements in Figure 1 are
stored in a linear array with the starting point of each row of
non-zero elements delineated by the wdispl elements.

Listing 1: Baseline Implementation
1 __device__ float __ReLU(float x){
2 return x<0.0?0.0:x>32.0?32.0:x;
3 };
4 __global__ void fused_ReLU(float *yout, float *yin, int neuron,
5 int *wdispl, int *windex, float *wvalue, float *bias, int *active,
6 int *category){
7 int xoff = blockIdx.x*blockDim.x+threadIdx.x;
8 int yoff = category[blockIdx.y]*neuron;
9 float acc = 0;

10 for(int n = wdispl[xoff]; n < wdispl[xoff+1]; n++)
11 acc += yin[yoff+windex[n]]*wvalue[n];
12 acc = __ReLU(acc+bias[xoff]);
13 if(acc > 0){
14 yout[blockIdx.y*neuron+xoff] = acc;
15 atomicAdd(active+blockIdx.y,1);
16 }
17 }
18
19 //INFERENCE LOOP AT HOST CPU
20 for(int l = 0; l < layer; l++){
21 dim3 grid(neuron/blocksize,mybatch);
22 dim3 block(blocksize);
23 cudaMemset(active_d,0,sizeof(int)*mybatch);
24 fused_ReLU<<<grid,block>>>(nextfeat_d,currfeat_d,neuron,
25 wdispl_d[l],wind_d[l],wval_d[l],bias_d,active_d,categories_d);
26 cudaMemcpy(active,active_d,sizeof(int)*mybatch,D2H);
27 int feature = 0;
28 for(int k = 0; k < mybatch; k++){
29 if(active[k]){
30 globalcategories[feature] = globalcategories[k];
31 categories[feature] = k;
32 feature++;
33 }
34 }
35 cudaMemcpy(categories_d,categories,sizeof(int)*feature,H2D);
36 mybatch = feature;
37 FEATPREC *tempfeat_d = currfeat_d;
38 currfeat_d = nextfeat_d;
39 nextfeat_d = tempfeat_d;
40 }

For simplicity in the figure, we assume a toy example
where each block consists of four threads and the warp size is
two. As a result, the GPU kernel deploys N/B thread blocks
for each feature, where N is the number of output feature
elements (pixels), and B is the block size. Here, each block
accesses a portion of W l. As each thread accesses the input, it
performs a fused multiply-and-add (FMA) operation with the
corresponding activation weight, accumulating the result in its
register acc. Finally, each thread adds the bias and activate (or
deactivate) the output, and writes the output to global memory.

While the baseline implementation exhibits a high degree
of thread-level parallelism for large output features, it is ineffi-
cient for several reasons. First, the global memory accesses to
the input matrix are not only uncoalesced, but also irregular:
Figure 1 highlights the memory accesses of the first thread
of the first block. An iregular subset of the Y l elements are
read by each thread. Second, threads that generate equivalent
elements in different output maps redundantly reads the same
row of the W l matrix. As a result the weight matrix is read M
times. This results in wasting memory bandwidth that could
have been used for the needed computation. Third, the load
imbalance among threads caused by different number of non-
zero elements in adjacent rows of W l yields thread divergence
within warps. We address these limitation in the next section.
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Fig. 1: Baseline fused kernel implementation. Each thread irregularly
accesses the input features and accumulates the output in register.

III. PROPOSED ALGORITHM DESIGN

In this section we discuss in detail the three GPU per-
formance optimizations to improve the inference rate of the
baseline implementation, and two memory optimizations to fit
large models into limited GPU memory. These optimizations
involve register tiling, shared memory tiling, efficient access
to weight matrix W l, compact index representation and out-
of-core storage of weight matrix W l. Listing 2 shows the
optimized-fused kernel implementation for sparse DNN com-
putation. Next we will describe each of these optimizations
and tuning parameters in detail.

A. GPU Kernel Optimizations

1) Register Tiling: The most obvious inefficiency of the
baseline fused kernel (shown in Listing 1, line 11) is the
duplicated access to the weight matrix across output features.
To provide reuse of the weight matrix W l from register,
the optimized kernel groups (MINIBATCH) multiple active
features and performs the ReLU computation for all of them
in a single step. This reuses the index (windex) and value
(wvalue) elements in each thread for MINIBATCH features
as shown in Listing 2, lines 23 and 24, where MINIBATCH
is the number of features in each minibatch.

When MINIBATCH is increased, the register data reuse
improves, thus increasing the arithmetic intensity. This saves
memory bandwidth for reading the weight matrices, but also
increases register useage. A MINIBATCH value of 12 is
selected for optimal performance, which balances increased
reuse with memory spills from increased register pressure.

2) Shared-Memory Tiling: We now address the duplicate
and irregular accesses to input features. Each input feature
element is potentially accessed multiple times by multiple
threads and they are accessed in an irregular patterns controlled
by the weight sparsity pattern expressed by windex. This
wastes memory bandwidth and increases access latency. For
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example, for block0,y in Figure 1, both t0 and t2 access
yin[4] but at different iterations for their execution.

Listing 2: Optimized Kernel Implementation
1 __global__ void opt_ReLU(float *yout, float *yin, int neuron,
2 int *buffdispl, int *mapdispl, unsigned short *map,
3 int *wdispl, unsigned short *windex, float *wvalue,
4 float *bias, int *active, int *category){
5 __shared__ float shared[BUFFSIZE];
6 int wind = threadIdx.x%WARPSIZE;
7 int yoff = blockIdx.y*MINIBATCH;
8 int xoff = blockIdx.x*blockDim.x+threadIdx.x;
9 float acc[MINIBATCH] = {0.0};

10 for(int buff = buffdispl[blockIdx.x];
11 buff < buffdispl[blockIdx.x+1]; buff++){
12 int mapnz = mapdispl[buff+1]-mapdispl[buff];
13 for(int n = threadIdx.x; n < mapnz; n += blockDim.x){
14 int ind = map[mapdispl[buff]+n];
15 for(int f = 0; f < MINIBATCH; f++){
16 shared[f*buffsize+n] = yin[category[yoff+f]*neuron+ind];
17 }
18 __syncthreads();
19 int warp = (buff*blockDim.x+threadIdx.x)/WARPSIZE;
20 for(int m = wdispl[warp]; m < wdispl[warp+1]; m++){
21 int ind = windex[m*WARPSIZE+wind];
22 float val = wvalue[m*WARPSIZE+wind];
23 for(int f = 0; f < MINIBATCH; f++)
24 acc[f] += shared[f*buffsize+ind]*val;
25 }
26 __syncthreads();
27 }
28 for(int f = 0; f < MINIBATCH; f++){
29 acc[f] = __ReLU(acc[f]+bias[xoff]));
30 if(acc[f] > 0){
31 yout[(yoff+f)*neuron+xoff] = acc[f];
32 atomicAdd(active+blockIdx.y*MINIBATCH+f,1);
33 }
34 }
35 }

To address this inefficiency, we stage irregular accesses
through shared memory. This is supported by preprocessing
the windex rows for each thread block and build a preloading
list (map) of all the yin elements collectively accessed by all
the threads in the thread block. For example, the preload list
for block0,y in Figure 1 would be [0,1,3,4,5,7,8,10,11,13,14].

During execution, the thread block will collect these
elements into consecutive entries of a buffer array in
the shared memory. For example, yin[0] will be loaded
into buffer[0], yin[1] into buffer[1], yin[3] into
buffer[2], and so on. The required tiling data structures
are constructed once prior to inference and are reused from
global memory for computation of all features.

The second part of the preprocessing step is to update the
windex so that the stored indices become indicies into the
buffer. For example, windex for t0,y will be updated from
[0, 4, 7, ...] to [0, 3, 5, ...]. During kernel execution, all threads
of a thread block cooperatively collect all the needed yin
elements into its shared memory.

When input feature access footprint of a thread block is
larger than the shared-memory size, the irregular accesses are
performed in multiple stagings, as illustrated in Figure 2(a).
Assume that the shared memory can only accommodate six
yin elements for each thread block, the footprint for block0,y
will be divided into two stages. The footprint of each stage
is mapped into the buffer array independently. Thus, for
block0,y , yin[8], yin[10], and yin[13] that are ac-
cessed in the second stage are mapped into buffer[0],
buffer[1], buffer[3], as illustrated in Figure 2(d).

For each stage, Listing 2, line 12–17, shows loading of
feature data to shared memory using the map data structure.
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Fig. 2: Optimized-fused kernel execution example.

Then feature data is accessed irregularly from shared memory
at line 24 according to the updated address read from windex.

3) Efficient Access to Weight Matrix: Even though the
baseline CSR storage is efficient in terms of memory footprint,
the access is not coalesced among threads in each warp. To
address this, we store the weight matrix in a transposed sliced-
ELL storage format with zero-padding in warp granularity.
Figure 2 shows the wdispl and windex data structures
corresponding to the CSR representation shown in Figure 1.

The first two columns of windex (in orange) in Figure 2(b)
shows the layout of the elements for block0,y . The top two sec-
tions separated by the dashed line each contains the windex
elements accessed by a warp of the block during the first stage
of execution. The bottom two sections are accessed by the
same two warps during their second stage of execution. The
wdispl elements marks the positions of the dash lines and
solid lines for every warp and every thread block.

The padded zeros are highlighted with red font color. The
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TABLE I: Inference Throughput (TeraEdges/Second)

Number of V100 GPUs (Six per Node)

Neurons Layers Single V100 Single A100 3 6 12 24 48 96 192 384 768

1024
120 10.51 (0.225s) 16.74 (1.59×) 18.92 22.46 25.52 28.52 27.77 29.17 27.89 29.12 29.13

480 12.87 (0.073s) 20.99 (1.63×) 21.47 24.34 26.92 28.73 28.43 29.30 28.80 29.10 23.06

1920 14.30 (0.264s) 20.68 (1.45×) 22.26 24.77 27.33 28.70 28.58 28.60 28.73 28.83 28.83

4096
120 9.45 (0.100s) 14.27 (1.51×) 20.69 31.36 47.82 62.03 70.31 75.81 79.11 81.13 82.20

480 11.74 (0.322s) 18.63 (1.59×) 28.18 40.58 56.54 67.63 73.16 77.27 80.02 79.97 82.22

1920 13.88 (1.08s) 19.86 (1.43×) 30.53 44.48 62.74 72.57 73.72 76.25 79.99 80.67 82.32

16384
120 6.15 (0.614s) 11.60 (1.89×) 16.31 28.85 50.74 64.33 89.18 111.44 146.88 114.87 111.30

480 7.45 (2.027s) 14.31 (1.92×) 19.82 32.88 50.83 71.45 95.78 112.61 138.62 138.30 139.44

1920 7.84 (7.704s) 15.27 (1.95×) 20.86 33.62 57.08 77.73 104.83 120.63 146.11 146.30 146.40

65536
120 3.47 (4.352s) 8.15 (2.35×) 10.90 18.77 34.20 51.14 73.67 100.72 162.19 173.25 179.58

480 3.83 (15.769s) 9.08 (2.37×) 12.13 20.39 37.63 56.66 75.29 108.06 166.15 170.26 169.30

1920 3.93 (61.474s) 9.33 (2.37×) 12.47 20.88 38.81 58.08 77.55 112.01 167.43 170.06 171.37

dashed lines represents the boundary between warps (each
block has two warps in this example) and solid lines represent
the boundaries between buffer stages, i.e., all blocks except
block 2 involve two stagings and block 3 involves three
stagings. In this example, the zero padding overhead is 27.5%
for warp granularity, however, it would be 80% and 100%
with zero padding in tile and layer granularity, respectively.
Warp-level padding introduces a small number of zeros while
maintaining coalesced (efficient) memory access.

B. Memory Optimizations
1) Out-of-Core Storage and Overlapping Strategy: Data

parallelism provides good scaling in an embarrassingly parallel
fashion. However, duplicating weights in each GPU can make
large networks infeasible for GPUs with limited memory
capacity. As a remedy, we implement an out-of-core storage
algorithm that loads the required weight data structures to GPU
memory from CPU memory when needed. Even though the
out-of-core algorithm saves significant amount of memory, it
has a data transfer overhead. We address this overhead by
hiding the data transfer behind the GPU kernel with a double-
buffering and overlapping strategy.

Double-buffering involves a pair of buffers in the GPU
memory. While layer l uses weights from one buffer, weights
for layer l + 1 are moved into the other buffer. When layer l
and the copy are both finished, the buffer pointers are swapped
and the same procedure is followed for the next layer. The
data transfers are completely hidden behind the inference
computation in our implementation.

2) Compact Representation and Batching: In order to re-
duce the memory footprint, we store the map and windex
data structures with two-byte unsigned short data type.
That reduces the memory footprint (and hence the data transfer
time) by approximately 33%.

We create batches for inputs to further reduce the mem-
ory consumed by input and output features during inference
computation. Batching has no significant overhead since we

overlap transfer of weights during the GPU computation as
discussed in § III-B1. As a result, we can fit even the largest
inference problem in a single V100 GPU with 16 GB memory.

IV. EVALUATION

A. Experimental Setup

We use the Summit [17] system at Oak Ridge National Lab-
oratory. Summit comprises 4,608 compute nodes, each with six
16 GB V100 GPUs. The network is a non-blocking fat tree of
EDR InfiniBand with 23 GB/s node injection bandwidth. The
throughput numbers are calculated by calculating input edges
over inference time. Inference time includes overlapped data
copy time of weight and inputs to the GPUs. Our evaluation is
carried out using Spectrum MPI 10.3.1.2, XL compiler 16.1.1,
nvcc 10.1.234, and CUDA driver 418.116;

B. Single GPU performance

1) Single Volta V100 GPU performance: The first column
of Table I shows the single-GPU throughput of our optimized
implementation. Compared to the baseline implementation,
our optimizations provide 5.56×–11.84× performance im-
provement. Thus, we do not report the baseline performance
in detail due to lack of space. As the depth of the network
increases, the throughput increases due to increased average
sparsity in the features. This means more feature rows are
entirely zero, and no thread-block is mapped to them. As
the number of neurons increases, the throughput decreases
due to two effects. First, increased zero-padding in the sliced
ELLPACK format causes more wasted work and memory
bandwidth. Second, less reuse from shared memory, since a
given set of outputs is less likely to reuse the same footprint
of features.

2) Single Ampere A100 GPU Performance: We now com-
pare the performance of the optimized fused kernel on the
latest GPU, NVIDIA Ampere A100. A100 increases memory
capacity from 16 to 40 GB, grows L2 cache from 6MB to
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TABLE II: Performance (Edges/Second) and Speedup (×) Comparisons with 2019 Sparse DNN Challenge Submissions
This Work Bisson & Fatica [18] Davis et al. [20] Ellis & Rajamanickam [21] Wang et al. [22] Wang et al. [23]

2019 Champion 2019 Champion 2019 Innovation 2019 Student Innov. 2019 Finalist

Neurons Layers Throughput Throughput Speedup Throughput Speedup Throughput Speedup Throughput Speedup Throughput Speedup

1024
120 2.917E+13 4.517E+12 6.46 1.533E+11 190.28 2.760E+11 105.69 1.407E+11 207.32 8.434E+10 345.88

480 2.930E+13 7.703E+12 3.80 2.935E+11 99.83 2.800E+11 104.64 1.781E+11 164.51 9.643E+10 303.84

1920 2.883E+13 8.878E+12 3.25 2.754E+11 104.68 2.800E+11 102.96 1.896E+11 152.06 9.600E+10 300.30

4096
120 8.220E+13 6.541E+12 12.57 1.388E+11 592.22 2.120E+11 387.74 1.943E+11 423.06 6.506E+10 1,263.52

480 8.222E+13 1.231E+13 6.68 1.743E+11 471.72 2.160E+11 380.65 2.141E+11 384.03 6.679E+10 1,230.99

1920 8.232E+13 1.483E+13 5.55 1.863E+11 441.87 2.160E+11 381.11 2.197E+11 374.69 6.617E+10 1,244.02

16384
120 1.469E+14 1.008E+13 14.57 1.048E+11 1,401.53 1.270E+11 1,156.54 1.966E+11 747.10 3.797E+10 3,867.84

480 1.394E+14 1.500E+13 9.29 1.156E+11 1,206.23 1.280E+11 1,089.38 2.060E+11 676.89 3.747E+10 3,721.66

1920 1.464E+14 1.670E+13 8.77 1.203E+11 1,216.96 1.310E+11 1,117.56 1.964E+11 745.52 3.750E+10 3,903.72

65536
120 1.796E+14 9.388E+12 19.13 1.050E+11 1710.29 9.110E+10 1971.24 1.892E11 949.15 – –

480 1.703E+14 1.638E+13 10.40 1.091E+11 1,560.59 8.580E+10 1,984.38 1.799E+11 946.41 – –

1920 1.714E+14 1.787E+13 9.59 1.127E+11 1,520.59 8.430E+10 2,032.86 – – – –

40MB, and brings 1.73× global memory bandwidth and 1.24×
the single-precision floating point peak performance [24]. At
the time of writing, the A100 is not available to the public,
so we do not have a cluster for scaling studies. We restrict
our study to the performance improvement of our optimized-
fused kernel on out-of-the box single A100 GPU, without any
A100-specific optimizations or tuning. We use CUDA 11 with
NVIDIA driver 450.51 on an Ubuntu machine.

Table I shows the performance improvement achieved by
the our optimized implementation on Ampere A100 GPU.
Using the same code, A100 yields a 1.45× to 2.37× speedup.
The improvement is more modest for smaller networks, for
which the implementation makes only modest demand on
the memory subsystem. For larger networks where the kernel
relies more on cache and global memory performance, A100
provides a much larger speedup. Optimization specific to
A100’s architectural features should yield further improve-
ment.

C. Multi-GPU Scaling on Summit System

In this evaluation, we report scaling of our sparse DNN
inference code with the Sparse DNN Challenge dataset. We
use MPI to parallelize the inference across multiple GPUs
on the Summit system without any network architecture- or
topology-specific optimization. This work employs a batch
parallelism strategy with an embarrassingly-parallel fashion,
where weights are replicated between GPUs and the features
are partitioned evenly across GPUs. During the inference,
we prune the inactive features, which yields load imbalance
between GPUs. Also, when the number of remaining active
features per GPU is small, the per-GPU throughput drops
significantly. We leave these open problems for future work.

Table I shows the throughput achieved on Summit for all
network configurations on up to 768 GPUs. For the smallest
network configuration, the strong-scaling limit is 16 nodes
(96 GPUs), which is more than the four-GPU scaling limit
observed on a single node of the 2019 champions. Although
strong scaling is observed, the largest parallel efficiency

observed is 54% at three nodes. For larger configuration,
strong scaling is observed out to 128 nodes (768 GPUs)
and corresponds to 223.3 GigaEdges/Second per GPU, and
a parallel efficiency of 87.6% is observed for one full node
(six GPUs), and 82.6% at two nodes.

D. Comparison with Prior Work

Table II compares the fastest time from our submission with
the fastest times from various 2019 submissions. Our speedup
varies from 3.25× to 19.13× over the fastest champion from
2019, with one configuration achieving a 1710× speedup over
one of the 2019 champions. Part of the contribution is from the
kernel implementation: the single-GPU speedup over Bisson
& Fatica [18] varies from 4.3× for the 1024-neuron 120-layer
to 1.13× for the 65526-neuron 1920-layer configurations.

1) Comparison with cuSPARSE Library: Wang et al. [23]
uses cuSPARSE on a V100 in their challenge submission in
2019. Like this work, they do not operate on inactive features,
making it possible for a direct comparison. As they report
single-GPU inference (the last column of Table II) times on
V100, we are able to compare our single-GPU implementation
to the fastest results they achieved with cuSPARSE. The
speedup of our single-GPU implementation varies from 210×
for 4096 neurons / 1920 layers to 125× for 1024 neurons /
120 layers over their cuSPARSE implementation.

V. CONCLUSION

In this work, we discuss that a baseline sparse DNN kernel
performance is limited by memory bandwidth and irregular
memory accesses. To address this, we propose three perfor-
mance optimizations: register tiling, shared-memory tiling, and
efficient memory access to weight matrices. We scale our
implementation up to 768 Volta V100 GPUs and report up to
180 TeraEdges/Second sustained inference throughput. These
results are up to 4.3× faster on a single V100 GPU and
an order of magnitude faster at scale when compared with
2019 Champions. We also show that proposed implementation
when executed with the latest Ampere A100 GPU, without any
optimization, achieves up to 2.37× speedup over V100 GPU.
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