
c© 2021 Carl Pearson

MOVEMENT AND PLACEMENT OF NON-CONTIGUOUS DATA IN
DISTRIBUTED GPU COMPUTING

BY

CARL PEARSON

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Wen-Mei Hwu, Chair
Associate Professor Steven Lumetta
Professor Luke Olson
Professor Sanjay Patel
Adjunct Research Professor Jinjun Xiong

Abstract

Steady increase in accelerator performance has driven demand for faster in-

terconnects to avert the memory bandwidth wall. This has resulted in wide

adoption of heterogeneous systems with varying underlying interconnects,

and has delegated the task of understanding and copying data to the system

or application developer. Data transfer performance on these systems is now

impacted by many factors including data transfer modality, system intercon-

nect hardware details, CPU caching state, CPU power management state,

driver policies, virtual memory paging efficiency, and data placement.

This work finds that empirical communication measurements can be used

to automatically schedule and execute intra- and inter-node communication

in a modern heterogeneous system, providing “hand-tuned” performance

without the need for complex or error-prone communication development

at the application level. Empirical measurements are provided by a set of

microbenchmarks designed for system and application developers to under-

stand memory transfer behavior across different data placement and exchange

scenarios. These benchmarks are the first comprehensive evaluation of all

GPU communication primitives. For communication-heavy applications, op-

timally using communication capabilities is challenging and essential for per-

formance. Two different approaches are examined. The first is a high-level

3D stencil communication library, which can automatically create a static

communication plan based on the stencil and system parameters. This library

is able to reduce iteration time of a state-of-the-art stencil code by 1.45× at

3072 GPUs and 512 nodes. The second is a more general MPI interposer

library, with novel non-contiguous data handling and runtime implementa-

tion selection for MPI communication primitives. A portable pure-MPI halo

exchange is brought to within half the speed of the stencil-specific library,

supported by a five order-of-magnitude improvement in MPI communication

latency for non-contiguous data.

ii

To my wife, for her support, guidance, and cool head.

iii

Acknowledgments

I would like to thank my committee for their valuable feedback and guidance.

This work is supported by IBM-ILLINOIS Center for Cognitive Computing

Systems Research (C3SR) - a research collaboration as part of the IBM AI

Horizon Network. This research used resources of the Oak Ridge Leader-

ship Computing Facility at the Oak Ridge National Laboratory, which is

supported by the Office of Science of the U.S. Department of Energy Con-

tract No. DE-AC05-00OR22725. This work utilizes resources supported by

the National Science Foundation’s Major Research Instrumentation program,

grant #1725729, as well as the University of Illinois at Urbana-Champaign.

I would also like to thank Dawei Mu, Omer Anjum, I-Hsin Chung, and Mert

Hidayetoglu.

iv

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Background . 4
2.1 CUDA System . 4
2.2 CUDA Runtime API vs. CUDA Operation 4
2.3 CUDA Streams and Events 5
2.4 Data Movement in CUDA Systems 6
2.5 Synchronous and Asynchronous CUDA Operations 7
2.6 MPI . 8

Chapter 3 Measurements . 9
3.1 Comm|Scope Design . 9
3.2 Libscope Design . 13
3.3 Observations and Guidelines 16
3.4 Conclusion . 24

Chapter 4 3D Stencil Halo Exchange Library 28
4.1 Distributed Stencil Overview 29
4.2 Challenges with CUDA+MPI Stencil Codes 32
4.3 Grid Partitioning . 34
4.4 Subgrid Placement . 36
4.5 Specialization . 37
4.6 Astaroth Evaluation . 44
4.7 Conclusion . 58

Chapter 5 Non-contiguous Data Optimization for MPI 61
5.1 Astaroth Communication in MPI 63
5.2 MPI Strided Datatype Handling 68
5.3 MPI Type commit . 82
5.4 MPI Pack and MPI Unpack 83
5.5 MPI Send, MPI Recv, and Performance Modeling 85
5.6 MPI Isend/Irecv . 91
5.7 Graph Partitioning for Data Placement 93
5.8 Interposer Library . 95
5.9 3D Stencil Evaluation . 100

v

5.10 Conclusion . 102

Chapter 6 Related Work . 105
6.1 CUDA Communication Benchmarks 105
6.2 3D Stencil . 108
6.3 MPI Datatype Handling . 109
6.4 Scientific Libraries . 111

Chapter 7 Conclusion and Future Work 113
7.1 Conclusion . 113
7.2 Future Work . 114

Appendix Artifacts . 119

References . 120

vi

Chapter 1

Introduction

With the end of Dennard scaling, computer architects have sought to satisfy

demand for increasing performance by providing specialized hardware accel-

erators tuned to computation with particular characteristics. Perhaps the

most successful example of this trend is the widespread adoption of graph-

ics processing units (GPUs) for more general data-parallel compute tasks.

With the success of GPUs as a template, architects are moving forward

with a wide variety of accelerators, such as SIMD extensions [1, 2, 3], AI

accelerators (Google tensor processing unit [4], Huawei Neural Processing

Unit [5], IBM neuromorphic chips [6], Intel Nervana [7]), motion coproces-

sors (Apple M-series [8]), field-programmable gate arrays (Xilinx Virtex [9],

Intel Stratix [10]), network processors (Netronome Agilio [11]), digital signal

processors (Qualcomm Hexagon [12], NXP DSP56xx Family [13]), vision pro-

cessing units (Eyeriss [14], Movidius VPU [15], Mobileye EyeQ [16], Microsoft

Holographic Processing Unit [17]) and many others. These heterogeneous

systems have become the dominant system architecture.

The enormous compute capability accelerators demands high-bandwidth

data access to “feed the beast.” Without this bandwidth, the performance

potential of the accelerator is largely wasted waiting for data. The trend of

integration (also motivated by reduction of total system cost) where semicon-

ductor die-size or power limits allow has provided one approach to solving this

problem. By integrating an accelerator onto the same die as the CPU, the

accelerator more easily gets high-bandwidth low-power access to data shared

with the CPU. For accelerators with high memory demands, however, the

system memory DRAM bandwidth may ultimately limit performance.

The second approach is to provide accelerators with their own high-per-

formance memory. Unfortunately, managing this memory then falls upon

runtime systems or the application developer, and moving data into accel-

erator memory to support high-performance execution is a first-order design

1

consideration for any accelerated application. The data-placement and data-

movement challenge is exacerbated by the growing demand for data-driven

applications. Analytics and neural-network applications ingest huge amounts

of data, and even if the computation per data element is small, the aggre-

gate computation can be commensurately large. That motivates developers

to use accelerators for these applications. To achieve high performance on

accelerators, developers must marshal and coordinate their data movement

and computation in heterogeneous systems.

Year Standardized or Introduced

B
an

dw
id

th
 (G

B
/s

)

0.001

0.01

0.1

1

10

100

1000

1990 2000 2010 2020

PCI AGP PCI-X PCIe NvLink

(a) GPU Bandwidth

Year Standardized

0.

0.

0.

1

1

1

1

1990 2000 2010 2020

Infiniband Ethernet Fibre Channel

(b) Network Bandwidth

Figure 1.1: Growth of interconnect bandwidth over time. In all cases, the
fastest configuration is used (e.g., 16 lanes of PCIe 3.0).

For accelerators with their own limited high-performance memory, the ef-

fect of the interconnect on the overall system performance has not escaped

notice. Figure 1.1 shows the rapid growth of GPU interconnect bandwidth

over time, by year introduced (NVLink) or standardized (PCI, AGP, PCI-X,

PCIe) [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. As the importance of these

interconnects grows, they also are used as the backbone for various software-

and hardware-backed coherency schemes between accelerators and host com-

ponents. Performance of the interconnects that tie accelerators together is

the foundational motivation for this work.

This work finds that empirical communication measurements can be used

to automatically schedule and execute intra- and inter-node communication

in a modern heterogeneous system, providing “hand-tuned” performance

without the need for complex or error-prone communication development

at the application level. This is demonstrated through the development and

evaluation of a high-level communication library for distributed stencil codes.

Since the communication library automatically discovers and applies relevant

2

techniques, substantial performance improvement is realized for an existing

application, which was limited by implementation complexity and lack of op-

timization for the evaluation platform. The primary downside of implement-

ing the techniques in a high-level library is that existing applications would

need to be modified to use it. To that end, this work also demonstrates how

a widely-used communication interface can use the same empirical measure-

ments.

The rest of this document is organized as follows:

• Chapter 2 describes background information on heterogeneous comput-

ers and the CUDA programming system, Linux NUMA system, and

MPI.

• Chapter 3 describes the design, implementation, and evaluation of the

CUDA communication microbenchmarks. These microbenchmarks are

the first comprehensive measurement of point-to-point bulk CUDA

communication methods, and provide the empirical measurements.

• Chapter 4 describes and evaluates how insights from the benchmarks

can be used to automatically plan and execute communication without

system knowledge from the application developer. The evaluation is

conducted by developing, deploying, and analyzing a high-level stencil

library and includes analysis of techniques that influence performance

in different circumstances.

• Chapter 5 describes how techniques developed in Chapters 3 and 4

can be integrated transparently with existing MPI applications. This

includes a novel low-overhead and general strategy for handling non-

contiguous GPU data, low-latency use of empirical performance in-

formation at runtime to inform communication strategy, and an im-

plementation that can transparently improve communication methods

without modifying applications.

• Chapter 6 discusses related work.

• Chapter 7 offers conclusions and future directions for this work.

3

Chapter 2

Background

2.1 CUDA System

For the purposes of this document, a CUDA-enabled computer comprises

three pieces: first, one or more CUDA “devices” – general-purpose graph-

ics processing units (GPGPUS or usually GPUs). Second, the “host” – the

CPU(s) and associated memory. Third, the “CUDA system” – the combi-

nation of the CUDA runtime library (accessible to the program through the

CUDA runtime library), the CUDA driver (not directly controllable from the

program), and the interconnect hardware (accessible through the operating

system).

The host and devices are where the traditional focus of high-performance

computing has been, e.g. loop optimization, vectorized operations, branch

prediction, and low-cost software abstractions. While these two components

are crucial to application performance, so is the CUDA system itself. Within

the CUDA system, the runtime library, driver, and interconnect hardware

all contribute to the observable performance.

2.2 CUDA Runtime API vs. CUDA Operation

The performance of CUDA operations comprises two pieces: the time it takes

the application thread to initialize the operation, typically by making CUDA

runtime library calls, and the time it takes the CUDA system to execute the

operation.

Figure 2.1 shows four scenarios: 2.1a, a synchronous operation, where

control is not return to the program until the GPU activity is completed;

2.1b, an asynchronous operation, where the calling thread is blocked for long

4

Figure 2.1: Examples of time taken in the CUDA runtime and
corresponding GPU activity. (a) A synchronous operation, (b) an
asynchronous long operation, (c) an asynchronous short operation, and (d)
a delayed operations.

enough to initialize the operations; 2.1c, an asynchronous operation where the

operation is so short it completes before control returns to the calling thread;

and Figure 2.1d , an asynchronous operation that is substantially delayed

from the point of initiation. The interval Ê-Ë represents how long before

control returns to the CPU (possibly to initiate another GPU operation),

and Ì-Í represents actual execution using the GPU resources. Depending

on the API call and the operation, these intervals may be very different,

though both intervals are relevant for understanding GPU performance.

2.3 CUDA Streams and Events

A CUDA stream is a queue of device work. With some exceptions for the

default stream, each stream represents an independent queue whose contents

is to be consumed by a GPU sequentially. Contents in different queues can be

consumed by one or more GPUs in parallel. Within a stream, no operation

may begin until the previous operation has completed. Between streams,

there is no implicit ordering.

Streams are the main vehicle for task-level concurrency in single-GPU and

multi-GPU systems. A single GPU can improve its utilization by pulling

independent tasks from multiple streams. Multiple GPUs can have parallel

tasks executing from multiple streams.

Kernels can be enqueued into a specific stream via their launch param-

eters. The cudaMemcpyAsync* family of functions enqueues data transfer

operations in a stream explicitly. A CUDA event can be inserted into a

stream, and serves as a no-op that still maintains its position in the queue.

Streams can be synchronized with the host through cudaStreamSynchronize,

5

or with other streams independent of the host with cudaStreamWaitEvent.

Finally, streams can have higher or lower priority. When a GPU can take

an operation from a stream, it will pick an operation from a higher priority

stream over a lower one.

2.4 Data Movement in CUDA Systems

This section describes the three classes of user-facing data transfers in CUDA

systems: explicit transfers, zero-copy/mapped transfers, and managed mem-

ory.

2.4.1 Explicit Block and Strided Transfers

Explicit transfers are initiated through the cudaMemcpy* class of API rou-

tines. A contiguous buffer referenced by a pointer and a size is transferred

from one address to another. GPUs include copy engines, which are able to

handle these transfers without invoking the GPU SMs or the CPU. CUDA

also provides similar APIs that allow transfers of non-contiguous memory

regions through the cudaMemcpy2D* and cudaMemcpy3D* functions. De-

pending on the GPU hardware, these non-contiguous transfers place various

restrictions on the size and alignment of the individual contiguous blocks

of the non-contiguous object. Otherwise, these functions are similar to the

explicit transfers described above.

2.4.2 Zero-copy and Direct Access

“Zero-copy” is a common name for the ability of different devices to directly

access memory which is physically present on another device. These accesses

are served by a transaction over the interconnect, without changing the loca-

tion of the backing data. Memory accesses originating from the CPU or GPU

that reference data on another device are converted to requests that cross the

interconnect (e.g. PCIe or NVLink). Data is retrieved from the owning de-

vice, and returned to the source device over the interconnect. These accesses

are particularly high latency, and require very careful attention to alignment

and coalescing to achieve full link utilization [29]. When this mechanism is

6

used for accesses between the CPU and GPU, it is commonly called a “zero-

copy” access, or an access to “zero-copy” memory. There is not a broadly

accepted term for a GPU kernel accessing data on another GPU; in this

document, it is referred to as “direct access” or “zero-copy”.

2.4.3 Unified Memory

CUDA optionally provides a unified memory abstraction, where the CUDA

system is responsible for presenting a coherent image of memory to all de-

vices, including atomic operations across the entire system. Such memory

can be allocated with the cudaMallocManaged function. In order to acceler-

ate performance, CUDA will try to move data at the page granularity to the

device that most recently accessed it (the “demand” mechanism). It may

also rely on the direct-access mechanism when thrashing access patterns are

detected. The user can provide usage hints through the cudaMemAdvise

API, including prefetching data to the device (the “prefetch” mechanism).

2.5 Synchronous and Asynchronous CUDA Operations

“Synchronous” CUDA operations are those which block progress on the call-

ing CPU thread until they have completed. They are commonly used due

to simpler integration with host code during the initial development process.

For example, a compute-intensive CPU function (which is naturally block-

ing, as the caller does not proceed until the function returns) can be directly

replaced with a synchronous GPU operation without changing the semantics

of the application.

“Asynchronous” operations are those which do not block the calling thread.

In this case, the calling thread will dispatch work to the GPU, and then pro-

ceed, and the GPU will execute that work at some point in the future. An

example of such an operation is the cudaMemcpyAsync function, which starts

a data transfer but may return before that transfer is complete. Use of these

functions typically allows better utilization of GPU resources, but requires

more complex coordination of CPU and GPU execution. Even when the pri-

mary interaction between the CPU and GPU is asynchronous, synchronous

operations are always eventually used to make sure the host does not attempt

7

to retrieve incomplete results from the GPU.

2.6 MPI

MPI is a specification for a library that implements the message-passing

parallel programming model [30]. MPI implementations have become the

dominant choice for distributed-memory high-performance computing on su-

percomputers. Several implementations are widely used, including Spectrum

MPI [31], Open MPI [32], MPICH [33], and MVAPICH [34]. MPI functions

operate on untyped buffers, which are typically “source” or “destination”

buffers, or both. MPI includes a variety of point-to-point transfers and

collective operations, and synchronous and asynchronous versions of most

functions.

2.6.1 CUDA-Aware MPI

CUDA does not directly provide a mechanism to move data between GPUs

on different nodes. A common programming pattern on GPU-accelerated

distributed computing is to use CUDA to manage data movement between

GPUs and from CPU to GPU, and to use MPI to move data between CPUs.

Some MPI implementations optionally support passing device pointers di-

rectly to MPI calls, leaving it up to the MPI implementation to handle mov-

ing data between GPUs in different ranks. Such implementations are said to

be CUDA-aware MPI implementations.

8

Chapter 3

Measurements

The foundation for improving multi-socket and multi-GPU data transfer per-

formance is measurement of the properties of that transfer. Comm|Scope [35]

is a tool primarily developed by the author to address some of the pitfalls and

gaps of previous measurement work. For a more detailed discussion of related

work see Chapter 6. Comm|Scope contributes low-overhead bandwidth mea-

surement implementations coupled with careful system performance controls.

With detailed measurements, it is possible for users to adjust the design of

their applications to maximize performance, and for system developers to

observe minute effects that may point to performance bugs. This chapter

describes the design and implementation of Comm|Scope, shows how CUDA

achieves dramatically different bandwidth under different configurations, and

describes guidelines for high-performance CUDA data transfer.

3.1 Comm|Scope Design

Comm|Scope [35] is a CUDA C++ microbenchmark program developed by

the author that measures the performance of CUDA data transfers and as-

sociated API calls. It uses the libscope system benchmarking library, also

developed by the author and described in Section 3.2.

3.1.1 Low-overhead Bandwidth Measurement

Section 2.2 describes the contributions of the CUDA runtime and the rest of

the CUDA system to the total execution time of CUDA operations. When

measuring the raw bandwidth achievable over the link, Comm|Scope’s mi-

crobenchmarks minimize the unintended measurement of CUDA runtime

overhead. This section describes the measurement approach.

9

Asynchronous operations are best measured with CUDA events, which

minimize the overhead of the measurement. Figure 3.1 shows an example

timeline of measurement. An event is recorded at the beginning and end of

one or more CUDA operations within a stream, and then the cudaEvent-

GetElapsedTime function provides the time between the two events.

Figure 3.1: Example timeline of correctly measuring an asynchronous data
transfer between GPU 0 and GPU 1. The CPU records a start and stop
event on either end of the transfer. The CUDA system records when those
events trigger in the stream, and cudaEventGetElapsedTime is used to
measure the transfer time, without including initialization time on the CPU
before the GPU activity begins.

A common but less-accurate method is to use host wall-clock time with

synchronous CUDA operations, or asynchronous CUDA operations followed

by cudaDeviceSynchronize or cudaStreamSynchronize. Figure 3.2 shows

an example of this method. It incorrectly includes two unknown times: the

time between the function call and the start of the operation (Ê), and the

time between the end of the operation and the end of the synchronization

with the host (Ë). Even widely referenced benchmarks like SHOC [36] use

this method. When Comm|Scope measures the time of asynchronous CUDA

operations, it uses the low-overhead method in Figure 3.1.

3.1.2 Bidirectional Transfer Measurements

The bidirectional bandwidth of a link is the amount of data that can be

transmitted simultaneously in both directions in a specified amount of time.

When the two transfers begin and end at the same time, the bandwidth

is the total data amount divided by the elapsed time. In practice, using

this approach to measure bidirectional bandwidth is challenging due to skew

between the transfer start and stop times. It is also not possible to accurately

10

Figure 3.2: Example timeline of a less-accurate measure of asynchronous
operation time. The host wall time (now) is recorded before and after the
operation is launched. Ê (Ë) marks a duration when the CPU initiates
(waits for) the operation and the operation actually begins (ends). In
contrast to the procedure shown in Figure 3.1, these durations are
incorrectly included in the measured time.

determine only the overlapping portion of the two transfers: CUDA events

cannot be queried for an absolute start and end time, and elapsed time

between events in different streams cannot be compared. An obvious but

less-accurate approach is to record the wall time, initiate the asynchronous

events, and then record the wall time again once both events have completed.

Figure 3.3 shows a timeline of such a measurement.

Figure 3.3: Example of improper measurement of a bidirectional transfer.
Before both transfers are initiated and after both transfers complete, the
host wall time is used to infer the achieved bandwidth. Ê is skew between
the CPU entering the CUDA runtime call and the beginning of the
operation. Ë highlights how the second transfer can be delayed due to the
CPU cost of initializing the first transfer. Ë shows how one transfer may
end before the other. Ì is skew between the end of the operation and the
CUDA runtime call returning. These measurement errors make the
bidirectional bandwidth appear lower than its true value.

Two streams are used to allow the transfers to execute at the same time,

with one in each stream. The CPU thread records the starting wall-time,

initiates both transfers, synchronizes both streams, and then records the

11

ending wall time. The weaknesses of this approach is that it introduces

skew in the start (Ê), stop (Ë), and includes time between the end of the

operation and return of control to the host thread (Ì and Í). All these errors

improperly reduce the estimate of the bidirectional bandwidth, as the links

are not fully active during the measured time.

Comm|Scope minimizes the effect of the start-time skew and synchroniza-

tion overhead (Ê and Ì in Figure 3.3) through a corrected measurement

implementation, shown in Figure 3.4.

Figure 3.4: Example of an accurate measure of a bidirectional transfer. One
direction is associated with each stream. First, a busy-wait kernel is
launched to block operations from beginning during initialization. The
“start” event is used to synchronize the beginning of the operations in each
stream, and a “done” event is used to mark when both operations have
completed. In this manner, the “start” and “stop” events bookend both
transfer options with minimal overhead. Ê is skew when the actual
transfers do not take the same amount of time, and therefore are not fully
overlapped.

Before the measurement begins, a busy-wait kernel is launched in the first

stream. This kernel occupies the GPU, and the CUDA event start inserted

afterwards is used to block the execution of the two data transfers until the

kernel completes. The run-time of the wait kernel is sufficient to allow the

CPU to set up all asynchronous transfers and events, thereby removing the

start-time skew. This is ensured by querying whether the start event has been

triggered after all communications are initialized. If so, the kernel was no long

enough, and the process is restarted with a longer wait kernel. This is ensured

by progressively lengthening the kernel until it has not completed after the

CPU Since CUDA events in different streams cannot be compared for elapsed

time, the stop event in the first stream waits for the done event in the second

12

stream. The result is that start marks the time the transfers begin, and

stop is only recorded once both transfers have ended. The synchronization

overhead is removed by using cudaEventGetElapsedTime to measure the

transfer time. Ê may still occur if one transfer is slower than the other.

3.1.3 Measuring Synchronous Operations

Synchronous CUDA operations do not return control to the calling thread

until they are complete. Comm|Scope measures synchronous operations by

using the wall-time before and after the operation. Figure 3.5 summarizes

the technique.

Figure 3.5: Example of an accurate measure of a synchronous operation.
The purpose of the synchronous operation is to block the calling thread, so
the measured time is simply the length of time the calling thread is blocked.

3.2 Libscope Design

Libscope is a C++ system benchmarking library, developed by the author,

which brings a variety of pre-existing techniques under one umbrella to ease

the implementation of CUDA microbenchmarks that are sensitive to system

configuration. This section describes the techniques implemented in libscope.

Variable CPU Clock Speeds

Many computers feature dynamic CPU frequency scaling to conserve power

when idle and boost performance for transient tasks. This presents a chal-

lenge when measuring performance, as CPU frequency may not be the same

from run to run. In the context of this work, the CPU performance could

13

have a substantial impact on performance of the CUDA unified memory sys-

tem and CUDA driver operations. On Linux, libscope automatically sets the

CPU governor to “performance” and can disable CPU boosting through the

ACPI or Intel P-State [37] interface. The original CPU scaling behavior is

restored when the benchmarks exit or are interrupted. Prior CUDA com-

munication benchmarks make no report of whether or how this variable is

controlled.

CPU Data Caching

CPU caches have a measurable effect on CPU/GPU data transfer perfor-

mance. Libscope provides an interface for flushing CPU caches through the

dcbf [38, p. 773] on POWER and clflush [39, p. 139] on AMD64. These

instructions invalidate and flush the cache lines associated with a particular

virtual address from all CPU data caches. This is done in some Comm|Scope

benchmarks before the transfer is initiated. Prior works that measure CUDA

transfers do not address this consideration.

3.2.1 NUMA Pinning

In ordinary program execution, the operating system may move the program

between CPU cores or sockets. This introduces execution time variability by

causing cache misses and changing which interconnects are required to move

data between the CPU and GPU. Libscope uses libnuma [40] to control the

execution and memory allocation pinning to specific sockets or CPUs in order

to control which interconnects are measured.

3.2.2 Compiler Side-Effects

When measuring zero-copy or unified memory host-to-GPU performance,

the GPU kernel should be as close to pure reads as possible to ensure that

host-to-GPU data delivery is measured with as little overhead as possible.

14

Listing 3.1: Minimal GPU read kernel (not implemented).

1 template <unsigned GD, unsigned BD, typename read_t >

2 __global__ void gpu_read(const read_t *ptr ,

3 const size_t bytes) {

4 const size_t gx = blockIdx.x * BD + threadIdx.x;

5 const size_t num_elems = bytes / sizeof(read_t);

6

7 for (size_t i = gx; i < num_elems; i += GD * BD) {

8 read_t t;

9 t = ptr[i];

10 }

11 }

Listing 3.1 shows such a minimal kernel. The grid of threads (grid size GD

and block size BD) loops over bytes bytes pointed to by ptr, loading them

with read t accesses. When the benchmarks are compiled with optimizations

turned on, the compiler observes that the load implied by line 9 has no effect,

and the entire code is eliminated, preventing the load performance from being

measured.

To correct this, the code is modified in two ways, shown in Listing 3.2.

First, the do not optimize function is called on the result of the load. do -

not optimize is a wrapper that inserts PTX code which puts a fake data

dependency and memory side-effect on the argument. This does not insert

any instructions, but prevents the compiler from removing the unused load

in the generated PTX code.

Unfortunately for benchmarking (but fortunately when generating opti-

mized application code), the second phase of the compilation which trans-

forms the PTX code into SASS will also do some simple optimization. In this

case, it will observe that the virtual register corresponding to t is unused,

and remove it (along with the load that generated it, which is the target of

the measurement). To defeat the second optimization, the flag parameter

is added, and a dummy store is hidden behind a conditional predicated on

the value of flag. This prevents the compiler from statically removing the

load. At run-time, this flag is given a null pointer, so the dummy store is

not executed. However, the compiler can still observe that the load only

has an effect if the store occurs (if flag is true), and lowers the load into

the conditional body guarded by flag. The do not optimize function also

prevents this from occurring.

15

Listing 3.2: gpu read kernel

1 template <unsigned GD, unsigned BD, typename read_t >

2 __global__ void gpu_read(const read_t *ptr , read_t *flag ,

3 const size_t bytes) {

4 const size_t gx = blockIdx.x * BD + threadIdx.x;

5 const size_t num_elems = bytes / sizeof(read_t);

6

7 for (size_t i = gx; i < num_elems; i += GD * BD) {

8 read_t t;

9 do_not_optimize(t = ptr[i]);

10 if (flag) {

11 *flag = t;

12 }

13 }

14 }

Listing 3.3 shows two implementations of do not optimize for different

argument types. Since they are template device functions, they are inlined

and there is no function call overhead.

Listing 3.3: device do not optimize

1 template <> __device__

2 void do_not_optimize <int32_t >(const int32_t& t) {

3 asm volatile("" ::"r"(t) : "memory");

4 }

5

6 template <> __device__

7 void do_not_optimize <int64_t >(const int64_t& t) {

8 asm volatile("" ::"l"(t) : "memory");

9 }

3.3 Observations and Guidelines

Systems-oriented microbenchmarking can accurately quantify data transfer

performance, reveal subtleties of performance not previously described in the

literature, and reveal surprising behavior that might suggest performance

bugs. This section highlights some examples from the leadership-class Sum-

mit system at Oak Ridge National Lab.

In particular, the measurements highlight:

16

• The large difference in observed data transfer performance depending

on which data transfer method is used: 2× for GPU-GPU, 8× for

GPU-CPU (Section 3.3.2).

• How locality improves bandwidth bandwidth (Section 3.3.3).

• How bidirectional transfers improve link utilization (Section 3.3.4).

• How multiple threads cannot hide CPU cost (Section 3.3.7).

• Using the CUDA Graph API to reduce CPU cost (Section 3.3.7).

3.3.1 Experimental System

All experiments for this chapter are carried out on Summit [41], a leadership-

class computing system at Oak Ridge National Labs. Summit comprises

4,600 compute nodes, each summarized in Table 3.1 and Figure 3.6. Triplets

of GPUs are associated with each CPU: GPUs 0-2 with socket 0 and GPUs 3-5

with socket 1. Within a triplet, components are fully connected by NVLink

2.0 x2 links, for 100 GB/s bidirectional bandwidth. Between triplets, the

sockets are connected with a 64 GB/s x-bus SMP interconnect. This means

that communication localized to one triplet should be at much higher band-

width than communication between triplets. The network is a non-blocking

fat tree of EDR InfiniBand with 23 GB/s node injection bandwidth [42].

Figure 3.6: Diagram of interconnect bandwidths of a Summit compute
node.

17

Table 3.1: Summit node hardware summary

CPU OS Kernel GPUs CUDA Driver MPI nvcc cc
22-core POWER9 RHEL 7.6 4.14.0-115.21.2.el7a.ppc64le V100-SXM2-16GB 418.116 Spectrum 10.3.1.2 10.1.243 g++ 6.5.0

3.3.2 Bandwidth Utilization

CUDA provides a variety of methods for moving data between participating

components, and not all provide the same performance. For example, five

methods for moving data (explicit transfers with and without peer access,

zero-copy access, and unified memory through the demand or prefetch mech-

anism) between components are compared in Figure 3.7. All transfers are

unidirectional. Figures 3.7a, 3.7c, and 3.7e show “near”-component band-

width (directly connected CPUs and GPUs), and Figures 3.7b, 3.7d, and

3.7f show “far”-component bandwidth (CPUs and GPUs associated with

different sockets). Several observations are apparent:

• For “small” sizes (< 106), elapsed time is dominated by a fixed over-

head.

• For “large” sizes (> 108), elapsed time is dominated by the transfer

size.

• Larger transfers typically have greater-or-equal bandwidth to smaller

transfers of the same type.

• No transfer reaches the 50 GB/s theoretical “near” limit (the fastest is

94%).

• The x-bus is nominally 64 GB/s bidirectional [43], but certain “far”

transfers are able to exceed 50% of that speed, reaching 40 GB/s.

• zero-copy transfers can reliably match explicit transfers for favorable

access patterns. The gap in Figures 3.7a - 3.7e is probably due to a

small amount of overhead introduced by interaction with the cache.

For the slower “far” transfers, the interconnect is slow enough to mask

the effect.

• Section 3.3.3 highlights the locality effects.

It is clear that the achievable bandwidth depends strongly on the modality,

i.e. the method used. The variation of achievable bandwidth can be up to

2x for GPU-GPU transfer.

18

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

cudaMemcpyPeerAsync (peer)
zero-copy
UM prefetch
cudaMemcpyAsync (no peer)
UM demand

(a) GPU-GPU Bandwidth (0-1)

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

cudaMemcpyPeerAsync (peer)
zero-copy
UM prefetch
cudaMemcpyAsync (no peer)
UM demand

(b) GPU-GPU Bandwidth (0-3)

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s) cudaMemcpyAsync (pinned)

zero-copy
UM prefetch
cudaMemcpyAsync (pageable)
UM demand

(c) CPU to GPU Bandwidth (0-0)

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s) cudaMemcpyAsync (pinned)

zero-copy
UM prefetch
cudaMemcpyAsync (pageable)
UM demand

(d) CPU to GPU Bandwidth (0-3)

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s) cudaMemcpyAsync (pinned)

zero-copy
UM prefetch
cudaMemcpyAsync (pageable)
UM demand

(e) GPU to CPU Bandwidth (0-0)

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s) cudaMemcpyAsync (pinned)

zero-copy
UM prefetch
cudaMemcpyAsync (pageable)
UM demand

(f) GPU to CPU Bandwidth (0-3)

Figure 3.7: GPU-GPU and GPU-CPU bandwidth for different CUDA
transfer methods. Numbers in parentheses, e.g. (0-1), refer to the
participating CPU or GPU ids. For each row, all transfers occur over the
same links, but the CUDA communication method can strongly affect
performance.

3.3.3 Locality

Section 3.3.1 described how different components have different theoretical

bandwidth between them. These bandwidth differences have a strong effect

19

on bandwidth measurable at the application level. Figure 3.8 highlights a

specific transfer method from Figure 3.7 to demonstrate the locality effect be-

tween a pair of GPUs (3.8a), CPU-to-GPU (3.8b), and GPU-to-CPU (3.8c).

For all transfers over NVLink, the system achieves 47.0 GB/s out of the

theoretical 50 GB/s provided by the interconnect. For other transfers over

x-bus, bandwidth drops. GPU-GPU transfers achieve 27.8 GB/s, while GPU

→ CPU achieves 38.4 and CPU → GPU achieves 41.6. The specifications

for the x-bus are 64 GB/s bidirectional, but the CPU-GPU transfers achieve

more than 50% of that capacity. This suggests the X-bus boosts its transfer

rate when only a single direction is used (e.g., by increasing clock speed).

Similar effects can be seen for zero-copy and unified-memory prefetch trans-

fers, the other two “fast” transfer methods.

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

GPU 0 to GPU 1
GPU 0 to GPU 3

(a)
cudaMemcpyPeerAsync
GPU-GPU Bandwidth

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

NUMA 0 to GPU 0
NUMA 0 to GPU 3

(b) cudaMemcpyAsync
CPU to GPU Bandwidth

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

GPU 0 to NUMA 0
GPU 3 to NUMA 0

(c) cudaMemcpyAsync
GPU to CPU Bandwidth

Figure 3.8: GPU-GPU and GPU-CPU bandwidth. Data transfers over
multiple interconnects (Section 3.3.1) exhibit lower bandwidth due to the
lower x-bus bandwidth.

In summary, for CPU-GPU transfers, the performance effect of locality is

less than expected since the unidirectional transfers achieve more than 50%

of the bidirectional bandwidth. At most, CPU-GPU locality only affords a

23% bandwidth improvement. For GPU-GPU transfers it is important to

place data so that larger communication occurs between directly connected

GPUs, with directly connected GPUs having a 69% bandwidth improvement.

3.3.4 Bidirectional Transfers

Typical interconnects have a higher bidirectional bandwidth than single-

directional. This is due to the physical construction of these bidirectional

20

interconnects, which comprise pairs of single-directional physical links. Fig-

ure 3.9 shows how utilizing both directions of the link simultaneously typ-

ically improves aggregate bandwidth. Figure 3.9a shows the performance

of cudaMemcpyPeerAsync. Figure 3.9b shows the performance of direct ac-

cesses between GPUs 0 and 1. Figure 3.9c shows the performance of direct

accesses between GPUs 0 and 3, across the X-bus between two sockets.

105 106 107 108 109

Transfer Size (B)

0

20

40

60

80

100

Ba
nd

wi
dt

h
(G

B/
s)

Bidirectional cudaMemcpyPeerAsync (0-1)
cudaMemcpyPeerAsync (0-1)
Bidirectional cudaMemcpyPeerAsync (0-3)
cudaMemcpyPeerAsync (0-3)

(a)
cudaMemcpyPeerAsync
bandwidth. Bidirectional
bandwidth drops for
“far” transfers, but
doubles for “near” ones.

105 106 107 108 109

Transfer Size (B)

0

20

40

60

80

100

Ba
nd

wi
dt

h
(G

B/
s)

Read/Write
Bidirectional Read
Bidirectional Write

(b) Zero-copy (GPUs 0 to
1). Minor bandwidth
variability in bidirectional
transfers is observable
between near and far
accesses, but both greatly
increased the total
bandwidth.

105 106 107 108 109

Transfer Size (B)

0

20

40

60

80

100

Ba
nd

wi
dt

h
(G

B/
s)

Read
Write
Bidirectional Read
Bidirectional Write

(c) Zero-Copy (GPU 0 to
3). Bidirectional write
accesses are slower than
any unidirectional
transfer. Bidirectional
read offers some small
improvement.

Figure 3.9: Bidirectional transfer bandwidth for cudaMemcpyPeer, and
zero-copy transfers between GPUs. For “far” transfers, bidirectional
transfers cause a large bandwidth regression for cudaMemcpyPeerAsync
and zero-copy transfers. For “near” transfers, performance nearly doubles,
as expected. It is possible that some performance bug affects inter-socket
transfers, or perhaps the X-bus boosts its transfer rate when only a single
direction is used (e.g., by increasing clock speed).

3.3.5 Cache Effects

The state of the CPU cache affects the performance of GPU-to-CPU trans-

fers. Figure 3.10 shows how remote GPU-to-CPU bandwidth varies when

the L3 cache is flushed. When the cache is flushed, bandwidth for data

coming to the CPU is greatly increased around the L3 cache size. This is

probably because the cache does not need to be flushed on-demand. In a

small unflushed transfer, each line in the destination buffer maps to a unique

line in the cache. For a larger transfer, multiple addresses in the destination

21

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

L3
$:

 1
0M

iBno flush
flush

(a) GPU 0 to NUMA 0 (single-hop)

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

L3
$:

 1
0M

iB no flush
flush

(b) GPU 3 to NUMA 0 (multi-hop)

Figure 3.10: GPU-to-CPU transfer bandwidth on a Summit node using
cudaMemcpyAsync. When the CPU caches are flushed before the transfer,
bandwidth is much higher for transfers around the L3 cache size (10MiB
per core-pair).

buffer correspond to each cache line, which only needs to be invalidated once.

As the transfer grows, the cost of each invalidation is amortized over many

transferred bytes, and the bandwidth climbs back towards the maximum 1 .

3.3.6 Anisotropy

Anisotropy is the property of exhibiting different properties in different direc-

tions. In this context, it means that the bandwidth between two components

is different in different directions.

This is observed on Summit for some transfers that cross the CPU socket

boundary (e.g., between GPUs 0 and 3). This observation is not directly

actionable for the user, as applications do not typically offer any flexibility

in which direction data must move between the CPU and the GPU. Sys-

tem developers, however, may use these observations as a starting point to

investigate performance bugs.

Figure 3.11 shows this effect in three scenarios. Figure 3.11a shows that

CPU 0 to GPU 3 is several GB/s faster than the reverse direction. The

effect is greatly magnified if the CPU cache is not flushed before receiving

the data. Figure 3.11b shows that during unified-memory prefetch, smaller

messages are faster in the GPU-to-CPU direction, while the opposite is true

1The locality effect (Section 3.3.3) is also visible.

22

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

CPU 0 -> GPU 3
GPU 3 -> CPU 0
CPU 0 -> GPU 3 (no flush)
GPU 3 -> CPU 0 (no flush)

(a) cudaMemcpyAsync

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

CPU 0 -> GPU 3
GPU 0 -> CPU 3

(b) Unified memory
prefetch

105 106 107 108 109

Transfer Size (B)

0

10

20

30

40

50

Ba
nd

wi
dt

h
(G

B/
s)

CPU 0 -> GPU 3
GPU 0 -> CPU 3

(c) zero-copy

Figure 3.11: Examples of anisotropy in multi-hop intra-node bandwidth.
Similar effects are not observed for directly connected components.

for messages larger than 4 × 107 bytes. Figure 3.11c shows that for zero-

copy transfers, the CPU-to-GPU direction is faster for messages above several

dozen kilobytes. The GPU-to-CPU direction is stores instead of loads, which

may incur some overhead for cache coherency.

3.3.7 CUDA Runtime

Until now, this chapter was concerned with the achievable bandwidth across

component links under various conditions. Comm|Scope can also be used to

measure the CPU cost of invoking the runtime operations themselves. The

high theoretical interconnect bandwidths mean that even a relatively fast

runtime operation represents a large amount of data movement. Table 3.2

shows the cost of select CUDA runtime operations, and the maximum of data

that could be moved in that time between two GPUs on a Summit node. For

smaller transfers, the cost of initiating the transfer may dwarf the time of the

transfer itself. To hide this cost, large transfers should be initiated before

small ones to keep the CUDA system busy.

Comm|Scope also shows that using multiple threads to overcome this

CUDA runtime cost is not effective. Figure 3.12 demonstrates this effect for

various CUDA runtime operations. As the number of threads increases, the

aggregate throughput does not substantially improve (and even degrades).

Multiple threads controlling a GPU context introduce mutual exclusion locks,

which causes the run-time cost of each call to grow. These measurements

suggest that using multiple threads to control the GPU is not generally an ap-

propriate method to issue CUDA runtime operations faster. Multiple threads

23

Table 3.2: Cost of select CUDA runtime operations on CPU 0, and how
much data could be moved at 50GB/s during that time.

CUDA Runtime Call Time (s) Bytes (50 GB/s)
cudaMemcpyAsync 5.169× 10−6 2.58× 105

cudaMemcpy3DPeerAsync 6.188× 10−6 3.09× 105

kernel launch (0B) 5.887× 10−6 2.94× 105

kernel launch (1B) 6.093× 10−6 3.05× 105

kernel launch (256B) 6.064× 10−6 3.03× 105

kernel launch (4096B) 6.595× 10−6 3.30× 105

may be useful if other CPU work is the bottleneck instead of CUDA runtime

throughput.

Another way to reduce the CPU cost of some CUDA operations is the

CUDA graph API. CUDA Graph permits a two-step process, where a se-

quence of calls are “instantiated” (recorded), and then “launched” (replayed)

later with reduced overhead. Any captured kernels are configured once, al-

lowing future execution of the same kernel with the same arguments to be

faster. This is especially useful if the same sequence of operations will be

repeated over and over again. Figure 3.13 shows the run-time cost of the two

CUDA Graph operations with a variable number and type of CUDA run-

time calls. Using cudaGraphLaunch for kernels provides substantial speedup

(7.6× at 20 kernels, compared with Table 3.2).

3.4 Conclusion

This chapter describes the design and implementation of Comm|Scope, a

point-to-point communication microbenchmark for multi-GPU multi-socket

systems. Two trends have combined to make intra-node bandwidth increas-

ingly difficult to understand. First, improving performance of the underlying

interconnect hardware causes other overheads (e.g. cache effects) to become

apparent. Second, as systems become more heterogeneous, the interconnects

between components become more non-uniform.

This chapter began by introducing the techniques that allow detailed mea-

surements (Section 3.1). Synchronous and asynchronous CUDA operations

are handled differently, as are unidirectional and bidirectional transfers. Once

detailed measurement methodology is established, small sources of variabil-

24

20 21 22 23 24 25 26

Num. Threads

0

25000

50000

75000

100000

125000

150000

175000
Th

ro
ug

hp
ut

 (A
PI

 c
al

ls/
s)

cudaMemcpy3DPeerAsync
kernel (8B params)
kernel (32B params)
kernel (4KiB params)

Figure 3.12: Aggregate throughput of selected CUDA runtime calls with
various numbers of calling threads (higher is faster). “params” refers to the
total number of bytes in the CUDA kernel arguments. A large jump in cost
is observed from one to two threads. As the number of threads further
increases, some calls show performance rising back to the single-thread
case, while other calls degrade further.

ity become visible. A separate library, LibScope, brings techniques together

to manage variable CPU clock speeds, CPU data caching, NUMA pinning,

and selectively defeat some compiler optimizations that inhibit benchmarking

(Section 3.2).

Finally, the chapter concludes by presenting quantitative results, and some

corresponding qualitative guidelines (Section 3.3). First, on fast intercon-

nects, the choice of communication method is especially important. For

GPU-GPU transfers, the fastest method (explicit) is more than double the

speed of the slowest (unified memory demand accesses) due to the page-

ownership mechanism required by the latter. For CPU-GPU transfers, that

difference grows to roughly 9× due to the CPU’s inability to generate enough

demand accesses to saturate the interconnect. On heterogeneous systems,

GPU locality is important, with “nearby” GPUs featuring a 69% bandwidth

25

0 2 4 6 8 10 12 14 16 18 20
Number of Recorded Operations

10 5

10 4

Ti
m

e
pe

r c
ud

aG
ra

ph
 A

PI
 c

al
l (

s)

cudaGraphLaunch (cudaMemcpyAsync)
cudaGraphInstantiate (kernel)
cudaGraphInstantiate (cudaMemcpyAsync)
cudaGraphLaunch (kernel)

Figure 3.13: Cost of cudaGraphInstantiate (record) and cudaGraphLaunch
(replay) when various numbers of runtime calls are captured.
cudaGraphInstantiate is a one-time cost, and cudaGraphLaunch is incurred
each time the sequence of operations is executed. cudaGraphLaunch
provides no speedup for most runtime calls, but a 7.6× speedup for
launching 20 kernels.

improvement over “far” GPUs.

Some detailed measurements are more relevant for system integrators than

application developers. When the CPU cache is flushed, GPU-to-CPU trans-

fers can be doubled for sizes around the L3 cache size. Also measurable is

“anisotropy,” where the same transfers in different directions have different

performance. This observation is typically not relevant for applications, but

may allow system developers to identify unexpected performance behavior.

Comm|Scope can also be used to measure some aspects of the CUDA run-

time performance. Specifically, this chapter addresses the cost of initiating

certain device operations, as well as attempts to amortize that cost with the

cudaGraph API (successful), and OS threads (unsuccessful).

This chapter focused on the performance of the OLCF Summit platform

specifically. Discussion of additional platforms can be found in Pearson et

26

al. [35]. The Appendix describes how to retrieve the Comm|Scope code

(and libscope) source code. In Chapter 4, the lessons from Comm|Scope are

integrated into a 3D stencil library. Chapter 5 attempts to generalize to arbi-

trary MPI applications, and also shows how some of the quantitative results

can be used in an MPI implementation. Section 7.2.1 discusses extending

Comm|Scope to intra-node communication.

27

Chapter 4

3D Stencil Halo Exchange Library

This chapter describes how the results obtained in Chapter 3 inform the de-

sign of HPC stencil codes for heterogeneous computers. It also evaluates the

effect of the design and explores how the design decisions can be automated,

so application developers do not need to be experts in system configuration

to achieve high performance.

• Fastest communication: heuristically select a fast communication method

based on participating GPUs.

• Minimize run-time: use CUDA graph API to minimize CUDA kernel

launch cost.

• Minimize run-time: use a single thread per rank to control GPU.

• High link utilization: all communication happens asynchronously.

• High link utilization: longer transfers before shorter, to overlap transfer

with initiation.

In addition, the code makes the following algorithm-level optimizations

that synergize with the system-level communication optimizations above:

• Hierarchical spatial decomposition to minimize communication.

• Elision of unneeded halo exchanges based on stencil kernel “shape”.

Furthermore, the library automatically handles indexing to simplify

• Accessing memory from GPU kernels through grid coordinate.

• Overlapping GPU kernel execution with distributed data transfer.

28

This chapter motivates, describes, and evaluates a patch-based distributed

stencil library developed by this author and first introduced in Pearson et

al. [44]. Consideration is restricted to stencil codes on homogeneous sys-

tems, i.e., each group of individual resources has the same characteristics.

This is consistent with a typical execution on current high-performance com-

puting platforms, and sidesteps any complications from externally-imposed

resource contention or a changing execution environment. Given these pre-

conditions, the system properties can be measured once, and an effective

static communication strategy can be created. It is possible that a static

environment with different architectures and/or endianness on sending and

receiving nodes could be created, while still maintaining similar performance

characteristics. While this chapter and the next do not explicitly address

that case, the discussion and findings still apply.

The rest of this chapter is organized as follows. Section 4.1 describes a

general CUDA+MPI distributed stencil code. Section 4.2 describes chal-

lenges of using CUDA+MPI directly to implement the stencil halo exchange.

Sections 4.3, 4.4, and 4.5 describe how the stencil library implements a fast

CUDA+MPI halo exchange. Section 4.6 evaluates the library in the context

of the Astaroth stencil code. Finally, Section 4.7 concludes.

4.1 Distributed Stencil Overview

Stencil computation is a fundamental formulation for solving differential

equations using finite difference, finite volume, and finite element methods,

which are used widely in high-performance computing (HPC) applications

such as simulating fluid dynamics, magnetohydrodynamics (MHD), space

weather predictions, seismic wave propagation, and others. The application

domain is represented as a discrete grid; stencil codes iteratively update each

gridpoint based on some function of its local neighborhood. The stencil kernel

(distinct from GPU kernels) describes the weights that each quantity from

the neighboring grid points contributes to the new value of the produced

gridpoint.

Each gridpoint may have several quantities associated with it (e.g. temper-

ature, pressure, partial derivatives, etc.). Each quantity is typically stored in

an “structure-of-arrays” style, rather than interleaving the quantities for each

29

gridpoint in a “array-of-structures” style. This can assist with efficient mem-

ory access during vectorization, as the same quantities for multiple gridpoints

are contiguous in memory and can be accessed in a single large load or store.

Furthermore, separate allocations also ensure that alignment requirements

for different datatypes are met.

Modeling phenomena with high spatial and/or temporal resolution leads

to enormous stencil grids. Current large-scale CPU simulations use up to

1010 grid points and 105 CPUs [45, 46], and are still orders of magnitude too

small to capture phenomena of interest in available time and energy budgets.

This has led to interest in using GPUs for stencil applications.

GPUs excel when there is limited data exchange, structured data reuse,

and massive parallelism. Stencils exhibit all of these properties [47]. Once

the stencil data is initialized on the GPU, it remains there without further

exchange with the host. The data-reuse between neighboring gridpoints is

(relatively) easy to leverage through shared memory and register queues in

GPU kernels, and the grid points can be updated in parallel.

For large-scale stencil applications, the grid data may be much larger than

a single GPU’s memory. Recent stencil codes use 1-8 quantities, a typical

stencil radius of 3, and subdomains per GPU of 5123, with a total domain

size of around 1010 at most [47, 48, 49, 50].

Typically, the stencil grid is spatially decomposed into subgrids, which are

placed in different memories. In each iteration, the exterior “shell” of these

subgrids needs gridpoint values that are located in different memories. An

explicit halo-exchange is used, where each subgrid includes a perimeter of

ghost points representing grid points from neighboring regions. During each

iteration, these ghost cells are updated with the new value from the corre-

sponding neighboring subgrid. This update is called the halo exchange, and

is the main focus of this chapter. These ghost gridpoints for the neighboring

subgrid are stored in the same allocation as the real gridpoints, preserving lo-

cality for the stencil computation and keeping memory access regular during

local computation.

Figure 4.1 shows an example of a distributed stencil. Figure 4.1a shows

a full stencil grid with three quantities. In Figure 4.1b the grid is split

among four GPUs, with each GPU holding all three quantities of a subgrid.

Gridpoints near the edges in one subgrid are reflected as the ghost points of

neighboring subgrids. Each quantity only exchanges with the corresponding

30

(a) Full stencil grid. (b) Decomposed stencil grid with
ghost points.

Figure 4.1: A stencil grid with three quantities distributed among four
GPUs. Data from one subgrid is sent to the ghost region of the neighboring
subgrid. Some exchanges reflect periodic boundary conditions (Ê).
Exchanges are done on a per-quantity basis (Ë).

quantity in neighboring subgrids (Ë). Communications may “wrap” around

the grid perimeter (Ê) for periodic boundary conditions.

In this construction, there is a large amount of parallelism available. At a

high level, the gridpoints allocated in each subgrid can be divided into three

groups. The largest are interior gridpoints. The values needed to produce

these points are entirely owned by the subgrid, and are not among the ghost

gridpoints. An outer shell of exterior gridpoints is also owned by the subgrid,

but cannot produce new values until the values from the neighbors arrive in

the ghost points. The thickness of this shell is defined by the order of the

stencil function.

The values for interior gridpoints may be computed immediately when

the iteration starts, as the subgrid already contains all values needed for

them after completion of the previous iteration. Since the interior points do

not need the ghost points, the halo exchange can also immediately begin in

parallel. Once the halo exchange has completed, the exterior points can be

computed. Figure 4.2 summarizes this.

Fine-grained parallelism is available in the halo exchange. Each halo ex-

change can be broken up intoNquant×Ndir independent and parallel messages,

where Nquant is the number of quantities and Ndir is the number of directions.

31

(a) Diagram of exterior, interior, and
ghost gridpoints.

(b) Dependency graph for halo
operations. Interior gridpoints may be
operated on while halo exchange or
exterior gridpoint kernels are running.

Figure 4.2: Dependency graph for stencil operations. Interior gridpoints
only have a dependency on gridpoints already in the local subgrid. Exterior
gridpoints require values from the ghost points to produce new values. The
ghost gridpoints are provided by neighboring subgrids during halo exchange.

Likewise, the exterior gridpoints can be correspondingly divided into groups

according to which ghost points they need from which messages. These exte-

rior gridpoints could be launched immediately when the corresponding ghost

points are received, without waiting for the entire halo exchange to complete.

4.2 Challenges with CUDA+MPI Stencil Codes

Emerging distributed HPC clusters feature nodes of multi-socket CPU and

multiple GPUs, with CUDA and MPI libraries to exploit the hardware.

These libraries are relatively low-level, featuring fine-grained control of the

underlying platform and many options for communication and data allo-

cation. Thus, implementing high-level data placement and communication

strategies for large-scale stencil computations on such clusters is a challenging

task.

Computational parallelism is straightforward to capture through GPU ker-

nels (though much work is devoted to optimal implementations for vari-

ous cases). The challenge from a systems perspective comes from high-

performance combination of GPU and MPI communication primitives to

32

facilitate data movement through the heterogeneous system. This design is

informed by careful measurement of the primitives (Chapter 3).

In the last decade, CUDA-aware MPI implementations have allowed GPU-

resident data to be passed to MPI operations. This simplifies CUDA+MPI

applications, as the developer no longer needs to manage CPU-GPU data

transfers. GPUDirect [51] has promised to accelerate these operations by

allowing GPUs and NICs to interact directly without staging data through

the CPU. Despite that, careful use of user-facing functions can surpass the

performance of these abstractions.

MPI does not feature a primitive that directly maps to stencil communica-

tion, though it does offer some building blocks. MPI datatypes can be used

to describe the (mostly) non-contiguous data that needs to be exchanged

between subgrids (this is discussed further in Section 5.1.3). This allows ap-

plication code to operate above the abstraction of messaging with individual

bytes, which simplifies the code and allows the MPI implementation to pro-

vide high-performance handling of non-contiguous types. There would be at

least one datatype per equivalent halo region. For example, depending on

how the MPI communication routines are invoked, the +x and -x face (the

subgrid surfaces whose normal vectos are the positive and negative direc-

tions of the x-axis) may be able to share the same MPI derived datatype but

operate with different starting addresses.

MPI collectives allow all participating ranks to send at most a single mes-

sage to all other ranks. The simplest form (MPI Alltoall) restricts all ranks

to send/receive the same count and type of data to all other ranks. MPI All-

toallv allows each rank to send/receive a different count from each rank, and

MPI Alltoallw further relaxes each rank to send/receive a different type from

each other rank. When combined with derived datatypes, MPI Alltoallw is

the most natural collective to use, as each rank can exchange the correspond-

ing halo region datatype with the corresponding neighboring rank. MPI All-

toallv can be used if MPI Pack/Unpack is first used, explicitly transforming

each non-contiguous datatype into a flat buffer of MPI TYPE PACKED.

MPI Alltoall can only be used if a separate MPI Alltoall call is used for each

different size message.

Unfortunately, all collectives only allow data to be sent/received from a

single source/destination buffer, meaning that if quantities are stored in sep-

arate allocations, then multiple collectives must be used. Furthermore, in

33

stencils with periodic boundary conditions, a pair of ranks may need to ex-

change data along more than one “direction”. This is distinct from the

common case, where two ranks would exchange a single halo region in a sin-

gle direction. This can be handled by using MPI Pack and MPI Unpack to

place multiple datatypes into a single buffer, or by building an MPI Struct

type to combine the two types.

Furthermore, stencil is not a good fit for collectives because most ranks

will not exchange data. For example, in a 3D stencil, each subgrid will have

at most 26 neighbors regardless of how many ranks are present. For very

large decompositions, substantial time in the collective call can occur iter-

ating over ranks that exchange no data. MPI introduced “topologies” to

handle this case. First, the MPI Cartesian topology simplifies determination

of neighboring ranks in a regular grid. It only operates directly on coordi-

nate directions, but through multiple directional shifts (e.g. up, then left),

diagonal ranks can also be determined. MPI graph topologies likewise al-

low the construction and query of arbitrary neighbor relationships. For each

topology there is a collective operation corresponding to the ones described

above, where only neighbors participate. Theoretically, this fixes the sparsity

in the collectives.

These obstacles have driven many attempts to create distributed stencil

communication frameworks. Fundamentally, the library described in this

work represents a comprehensive effort to automate, combine, and evaluate

partially realized communication techniques used in previous stencil works.

Compared to prior work, it introduces automatic communication specializa-

tion, flexibility under mappings of GPUs to MPI ranks, and evaluation of

the communication performance specifically thanks to these techniques. It

combines those techniques with benchmark-driven design, node-aware data

placement and communication overlapping. See Chapter 6 for a more thor-

ough discussion of related work.

4.3 Grid Partitioning

The stencil library uses a two-level hierarchical recursive bisection algorithm

common for this type of problem [52, 53]. Consider a system with N nodes

and P GPUs per node. First, the stencil grid is evenly partitioned into N

34

node-level subgrids to minimize the total off-node communication volume.

The algorithm ensures these subgrids are as cubical as possible, minimizing

the exterior-to-interior (Section 4.1) volume, and therefore the required inter-

node communication per gridpoint.

The same algorithm is applied to each node-level subgrid to further subdi-

vide it into P GPU-level subgrids, again minimizing the exterior-to-interior

volume ratio and the required inter-GPU communication (subject to the

already minimized inter-node communication).

Figure 4.3: Hierarchical partitioning of the stencil grid into node-level
subgrids (Ê) and further into GPU-level subgrids (Ë). In this example, four
nodes are partitioned into 2x2 along the X and Y dimensions. The resulting
subgrid is partitioned among six GPUs by 3 in the z dimension and 2 in the
x dimension. Each partition has a three-dimensional node and GPU index.

Figure 4.3 shows an example of the hierarchical decomposition of a stencil

grid for four nodes with six GPUs per node (N = 4, P = 6). First, the

recursive bisection scheme is applied to the whole grid at the node level (Ê).

The grid is largest in the x-dimension, so the grid is divided by the largest

prime factor of 4, which is 2. After that division, y is the largest dimension, so

the grid is further divided by the next prime factor, again 2. This yields four

subgrids, each with a three-dimensional node index. The exterior volume

of these subgrids is minimized given the requirement of four equally sized

subgrids.

Then the recursive bisection is applied to each node subgrid at the GPU

level (Ë). For six GPUs, the prime factors are three and two. The longest

dimension of the node subgrid is z then x, so the node subgrid is divided

along those axes by three and two, respectively, to yield the subgrids that

will be assigned to each GPU (Section 4.4).

35

Each subgrid therefore has a 3D node and 3D GPU index. These indices are

unique for each subgrid, and can be used to determine which subgrids need

to communicate with which others. For example, the -x neighbor of subgrid

might be [[1,1,0],[1,0,0]] is [[1,1,0],[0,0,0] (same node, −1 in x dimension of

GPU index), where the first triplet is the X,Y,Z coordinate in the 3D node

space, and the second is the coordinate in the 3D GPU space.

4.4 Subgrid Placement

After partitioning, the stencil library assigns each subgrid to a GPU. One

node-level subgrid is assigned to each node. The stencil library does not

attempt to evaluate node proximity, so node subgrids are assigned to nodes

arbitrarily. This is because the OLCF summit system has a full-bandwidth

fat-tree network, so the bandwidth between any pair of nodes is equal.

Figure 4.4: Example communication matrix (w in quadratic assignment
problem) and bandwidth matrix (element-wise reciprocal of d). The result
is the mapping (f), where the subgrid for row (or column) i of the
communication matrix is mapped to GPU f(i). The entries in the
communication matrix are given in terms of the subgrid size as well as the
stencil radius r.

In contrast to the nodes within the system, the GPUs within a node do

not have uniform bandwidth. Therefore, it may be desirable to place neigh-

boring subgrids on GPUs that have fast interconnects between them. Within

36

each node, this is modeled as a quadratic assignment problem (QAP). The

quadratic assignment problem is concerned with assigning a set of P facilities

to P locations, according to the flow between the facilities and the distance

between the locations, with the goal of placing facilities with high flow close

to one another. This is analogous to placing subgrids with high exchange vol-

ume on GPUs that have high communication bandwidth. The assignment is

a bijection f between facilities and locations. Let real-valued square matri-

ces w and d represent the flow between facilities i and j, and the distance

between locations i and j, respectively. Then, the QAP minimizes the cost

function ∑
i,j<P

wi,jdf(i),f(j)

the sum of the flow-distance products under f .

The flow matrix entries are the number of bytes of data exchanged between

GPU subgrids, and the distance matrix entries are the element-wise recip-

rocal of a matrix B which captures the bandwidth of GPUs i and j in Bi,j.

Figure 4.4 summarizes the construction of the matrices, and gives an exam-

ple mapping. The CUDA driver provides the Nvidia Management Library

libnvidia-ml, which can be used to infer the connection and bandwidth

between GPUs in a system The quadratic assignment problem is NP-hard.

In this work, we simply check all possible subdomain-GPU mappings on each

node. Since the number of GPUs in a node is typically small, the cost of

exhaustively searching all combinations is acceptable.

Figure 4.4 summarizes the scheme. On each OLCF Summit node, six sub-

grids are assigned. Their communication requirements (QAP flow) depend

on their logical position within the grid. The QAP distance is determined

by the GPU bandwidth. On Summit, each GPU triplet is connected by 2x

NVLink2, for 100 GB/s bidirectional bandwidth. Any connection across the

x-bus is limited to 64 GB/s. The element-wise inverse of the bandwidth is the

distance, and the mapping is the bijection delivered by the QAP formulation.

4.5 Specialization

Once the compute region has been partitioned (Sec. 4.3) and assigned to

GPUs according to the theoretical communication performance (Sec. 4.4),

37

Table 4.1: Summary of requirements for communication methods. “X”
means the communicating subregions must share the corresponding
topology for the communication method to work. “Preference” refers to the
heuristic preference for that communication method, if all requirements are
met (1 is highest). “Async” refers to how the library implementation allows
multiple communications to be overlapped.

Same...
Method Preference ...GPU ...rank ...node Async Notes
Kernel 1 X X X native peer access

Memcpy 2 × X X native peer access
ColocatedMemcpy 3 × × X state machine peer access
CudaAwareMPI 4 × × × native CUDA-Aware MPI

Staged 4 × × × state machine

a fast communication method is selected based on the physical (node) and

logical (rank) location of the two GPUs.

In general, the exchange operation consists of taking the (possibly) non-

contiguous boundary gridpoints from the interior (non-ghost points) of the

source subgrid, packing it into a contiguous buffer, sending that buffer to the

destination GPU, and unpacking that buffer into the appropriate exterior of

the destination subgrid. Figure 4.5 shows an example of a pack operation on

a 3D region. In this example, we consider an XYZ storage order, yielding

a non-contiguous storage for the 3D region shown. The result of the pack

operation is to copy that data into a contiguous buffer.

In order to support high-performance exchanges in a variety of system

configurations, the library implements five communication methods. The

methods are selected appropriately for each sending and receiving pair of

subgrids. All methods are asynchronous, allowing them to be freely over-

lapped, even within a single process. Table 4.1 shows the communication

methods and when they apply.

4.5.1 Baseline CUDA-aware MPI Communication

The baseline for the stencil library performance evaluation is a state-of-the

art approach where every halo exchange uses a single CUDA-aware MPI -

Isend/MPI Irecv with each other rank it needs to communicate with. This

places the burden of overlapping and optimized communication on the MPI

implementation instead of the application code.

This “CUDA-aware” method shares the same general structure as all CUDA-

38

Figure 4.5: Example of packing for a 3D region. In general, the linear
storage order of the subdomain in memory causes the elements of the 3D
region to be strided. The pack operation places only those elements in a
dense buffer with some predetermined order.

+MPI communicators in this work. Paired sender and receiver objects are

created on the source and destination ranks to manage both ends of the

communication. Therefore, a pair may handle the communication of more

than one direction if the grid decomposition and boundary conditions cause

a pair of ranks to be neighbors in multiple directions. This maximizes the

size of the messages when the grid decomposition does not give each subgrid

26 unique neighbors, but also reduces the number of concurrent messages.

Figure 4.6b shows the paired sender and receiver objects for the baseline

CUDA-aware method. Data from each quantity is packed (A) into a single

buffer on the source GPU. A single kernel is invoked to pack all quantities.

Since the shape of this halo region is the same in all quantities, the same

kernel launch parameters offer good performance for all quantities. This also

means that only the kernel launch latency is accrued once for each direction,

instead of once for each combination of of quantities and directions. MPI -

Isend (B) is initiated after the data is packed.

The receiver does the reverse, first initiating an MPI Irecv (C) and then

unpacking the data into the corresponding quantity arrays on the destination

GPU (D). Figure 4.6a shows the sender and receiver object decomposed into

two states. Section 4.5.5 describes how these states contribute to CUDA+-

MPI communication overlap.

39

(a) (b)

Figure 4.6: CUDA-aware MPI communicator, showing state transitions (a)
and data flow (b). Here, the CUDA-aware MPI implementation is
responsible for moving data between GPUs. Data from each quantity is
packed (A) into a buffer on the source GPU and an MPI Isend (B) is
initiated. The receiver starts by initiating an MPI Irecv (C) and then
unpacks the data into the corresponding quantity arrays on the destination
GPU (D).

4.5.2 “Staged” Communication

The “staged” communication method is the foundation upon which further

specializations are applied. Instead of relying on the CUDA-aware MPI im-

plementation to manage device data, the staged method uses CUDA APIs to

explicitly transfer data between the GPU and host, and uses MPI to move

data between ranks. This applies both to intra- and inter-node transfers.

Figure 4.7b shows an outline of this method. Data is packed just like the

CUDA-aware communicator (Section 4.5.1). Once all data has been packed,

the contiguous buffer is copied (A2) to pinned memory on the source CPU,

and then an MPI Isend (B) is initiated. This is in contrast to the CUDA-

aware method, where the MPI Isend was directly invoked on the packed

GPU buffer. The receiver starts by initiating an MPI Irecv (C), copies the

received data to a buffer on the destination GPU (D1), and unpacks the

data into the right location in GPU memory (D2). One would expect staged

communication to perform worse than the baseline unless CUDA-aware MPI

is poorly implemented, hence “specializations” instead of “optimizations.”

In practice, the staged method is sometimes superior, as discussed in Section

4.6.

40

(a) (b)

Figure 4.7: Staged CUDA+MPI communicator, showing state transitions
(a) and data flow (b). Data from each quantity is packed (A1) into a buffer
on the source GPU, copied (A2) to the source CPU, and then an MPI Isend
(B) is initiated. The receiver starts by initiating an MPI Irecv (B), copies
the received data to a buffer on the destination GPU (D1), and unpacks the
data into the right location in GPU memory (D2).

4.5.3 “Colocated” Communication

When two ranks are on the same node, data can be transferred directly

between GPUs in different address spaces without passing that data through

MPI. Figure 4.8 shows a diagram of the transfer method.

In the staged transfer method, MPI provides two roles: first, moving data

between the source and destination address spaces, and second, blocking

the receiver until data arrives. In the colocated receiver, data is moved

directly between GPUs through cudaMemcpyPeerAsync. The source requires

a pointer to the destination buffer that is valid in the source address space.

The receiver uses cudaIpcGetMemHandle to get an opaque handle to its GPU

buffer, and sends that to the host through MPI. Synchronization between

sender and receiver is achieved through a single CUDA event, which is shared

between ranks in a similar manner, through cudaIpcGetEventHandle. MPI

is still used to ensure the receiver does not query the CUDA event before

the sender has recorded the event, though only a single-byte message is sent,

instead of all the data.

41

(a) (b)

Figure 4.8: Colocated CUDA+MPI communicator, showing setup and
receiver state transitions (a) and data flow (b). During application
initialization, a pointer to the buffer on the destination GPU is passed to
the source rank through MPI and the cudaIpc* family of functions.
Likewise, a single CUDA event gets a handle in each address space. During
each exchange, data is packed (A1) into a buffer on the source GPU then
copied (A2) directly to the destination GPU using CUDA. The source rank
records in the event that the copy has been issued (A3), and then sends a
1-byte MPI message to the destination rank (A4), letting it know the event
is valid. The receiver starts by initiating an MPI Irecv (B), where it waits
for the source to start the transfer. Once the signal is received, it blocks
execution of the unpack kernel (C2) until the event fires, which means the
copy is done (C1).

4.5.4 “Peer” and “Kernel” Communication

When two GPUs are in the same rank, they share an address space and many

complexities of the colocated method are avoided. Figure 4.9 summarizes the

two methods. For two different subdomains managed by the same MPI rank,

data is transferred between GPUs with cudaMemcpyPeerAsync. When one

subdomain is its own neighbor, a GPU kernel is used, keeping the data in-

memory.

4.5.5 Overlapping and State Transition Engine

Overlapping communication (Section 3.3.4) is crucial for achieving good per-

formance. Overlapping communication is achieved by implementing all trans-

42

(a) (b)

Figure 4.9: Peer CUDA communicator (a) and Kernel CUDA
communicator (b). For the peer communicator, both GPUs are in the same
MPI rank, so that rank is both the sender and receiver, and so
sender/receiver synchronization is required. The data is packed into a
buffer on the source GPU (A1), copied to the destination GPU (A2), and
then unpacked (A3). These operations are inserted into the same stream to
order them. The kernel communicator only applies when a GPU is both
the source and destination. A single kernel is used to move the data
directly within the memory of that GPU.

fers asynchronously, even when the CUDA and MPI APIs that make up those

methods have a synchronous relationship. Each sender and receiver object is

implemented as a finite state machine, where necessary, as part of the library

code running on the CPU. On the send side, this allows each sender to initiate

the asynchronous packing operation on the GPU, then yield so that the next

sender may begin. Once all sends have been initiated, the library repeatedly

polls all the senders in turn, checking if their GPU operations have com-

pleted by querying the corresponding stream. When a GPU operation has

completed, the second asynchronous operation (MPI Isend for CUDA-aware

method, cudaMemcpyAsync for staged method, and cudaMemcpyPeerAsync

for colocated method) is initiated. This process repeats until all senders have

43

initiated their GPU and MPI operations, and the send-side work is finished.

During this time, the sender process is fully occupied with the repeated check-

ing of all remaining unfinished senders. In this way, each send operation can

execute concurrently with maximal overlap of all operations. Each sender

and receiver object maintains its own high-priority CUDA stream (Section

2.3) to prevent spurious scheduling delays that increase synchronization wait

time.

Furthermore, transfers that are expected to be slower are initiated before

transfers that are expected to be faster. The transfers are initiated in reverse

order of preference from Table 4.1, and within each method, from largest size

to smallest size. This allows the CPU cost of initiating the faster transfers

to be incurred while the slower transfers are progressing.

4.5.6 CUDA Graph API

Each iteration of the distributed stencil grid requires a halo exchange. Each

of these halo exchanges involves the same amount of data moving between

the same memories to and from the same allocations – i.e., their packing and

unpacking CUDA kernels are launched with the same arguments.

The stencil library uses the cudaGraph* API family to accelerate these

repeated operations. Section 3.3.7 shows microbenchmarks of how the cud-

aGraph API can accelerate CUDA runtime operations. Before the first halo

exchange, the relevant kernel operations for each sender and receiver ob-

ject are recorded using cudaStreamBeginCapture, cudaStreamEndCapture,

and cudaGraphInstantiate. This recording operation does some of the nec-

essary kernel launch work ahead of time, so that future invocations can be

faster. Then, when the time comes to actually invoke those kernels, cuda-

GraphLaunch is used to start the actual pack operations with lower latency.

4.6 Astaroth Evaluation

Astaroth [49] is a 3D stencil code which simulates stellar dynamics. Each

grid point has eight double-precision quantities, and each GPU is responsible

for a 2563 cubical subgrid. It uses a three-step Runge-Kutta integration

scheme, where a full stencil iteration consists of three full halo exchanges

44

and three integration kernel invocations. This section uses the stencil library

to implement the communication for the Astaroth grid.

Astaroth maintains its own implementation of the stencil halo exchange

code. Each quantity is maintained as a pair of “in” and “out” buffers, where

the stencil kernels are applied to the “in” buffer to produced values in the

“out” buffers. These “vertex buffers” are not generally exposed to the appli-

cation code directly, as Astaroth provides a domain-specific language (DSL)

in which the user can describe their stencil kernel, and Astaroth will generate

the appropriate CPU/GPU kernel code which accesses those buffers, as well

as the communication code to handle halo exchange. The stencil commu-

nication library described in this chapter manages the gridpoint data itself

to facilitate optimized communication. In the modified Astaroth code, the

stencil communication library reads the stencil kernel and grid parameters

from the Astaroth configuration data. The Astaroth data allocation code is

then replaced with a command to the stencil library to allocate the gridpoint

data appropriately. The Astaroth vertex buffer objects are then overwritten

with pointers to the corresponding internal buffers of the stencil communica-

tion library. Then, the application can use the existing Astaroth interface to

apply the kernels to the gridpoint data, and use the stencil communication

library to handle the communication.

In all experiments in this section, each GPU handles a 2563 cube of grid-

points, for a total of 2 GB of gridpoint data (current and next values). This

ensures that there is a bijection between ranks in all experiments, and that

the communication volume between neighbors is identical. Including the

stencil order of three, each quantity allocation logically becomes 2623 8-byte

words, or 2096×262×262 bytes. The 3D allocation has a pitch of 512 bytes,

so each quantity allocation is actually 2560× 262× 262 bytes, or 167.6 MiB,

for a total of 2.6 GiB, including halo space and unused space for row pitch.

A 5123 cube would be approximately eight times larger, and would exceed

the 16 GiB of GPU memory capacity.

Astaroth uses Morton ordering [54] to assign 3D subregions to ranks and

only supports powers-of-two numbers of ranks. For this reason, the Astaroth

code cannot fully utilize the resources of the Summit system, which has six

GPUs per node. Furthermore, this decomposition strategy is different from

the one used in the stencil library, which explicitly groups subgrids onto

nodes for locality.

45

To maintain a like-for-like comparison, both the unmodified Astaroth im-

plementation as well as the implementation modified to use the stencil com-

munication library maintain 2563 gridpoints per GPU. The unmodified As-

taroth distributed grid extents are chosen to maintain as cubical a shape

as possible. Due to the hierarchical nature of the stencil communication li-

brary, a modified approach is required to maintain a cube of gridpoints on

each GPU that is 256 in each dimension. To understand why, consider the

2-node, 6-rank-per-node scenario. A natural cube would be approximately

256 × 12
1
3 = 586 gridpoints on each side. This is first split in the X di-

mension among two nodes, yielding 293 × 586 × 586 each. Then, it is split

within the node by 3 and 2 in the longest dimensions, yielding a final shape

of 293 × 195 × 293. While the one, two, and four ranks-per-node configu-

rations could have been identical to the corresponding unmodified Astaroth

configuration, that would prevent easy comparison of different configurations

within the stencil library itself, as a largely different decomposition would ex-

ist for the six-rank-per-node configuration. As a consequence of the different

grid extents, the configurations with a small number of nodes will necessarily

have different proportions of on-node and off-node communication between

the two implementations. However, once eight nodes is reached, that differ-

ence disappears.

4.6.1 Flaws in Spectrum MPI CUDA-aware Implementation

The Spectrum MPI 10.3.1.2 implementation on the Summit system does

not provide a good platform for CUDA-aware MPI application optimization.

Details about the design of the implementation are not available but some

information can be gleaned from using a CUDA profiler like Nvidia Nsight

Systems [55]. Spectrum MPI routes CUDA operations from CUDA-aware

MPI transfers into several different CUDA streams. Some on-node transfers

are turned into device-to-device transfers using cudaMemcpyAsync. These

transfers are either placed into the default stream, or a second created stream.

Some off-node transfers are implemented using device-to-host and host-to-

device transfers, presumably with an intervening CPU-to-CPU MPI opera-

tion. Two additional streams are dedicated to host-to-device and device-to-

host transfers respectively. These transfers are never placed into the default

46

stream.

Nodes / Ranks per Node

A
st

ar
ot

h
Ite

ra
tio

n
Ti

m
e

(s
)

0.000

0.025

0.050

0.075

0.100

0.125

1/1 1/2 1/6 2/1 2/2 2/6 4/1 4/2 4/6 8/1 8/2 8/6 16/1 16/2 16/6 32/1 32/2 32/6 64/1 64/2 64/6 128/1 128/2 128/6 256/1 256/2 256/6 512/1 512/2 512/6

Baseline Baseline + Specializations

Figure 4.10: Performance of the Colocated and Kernel methods on top of
the baseline Spectrum MPI CUDA-aware communication method. Due to
spurious synchronization introduced by the Spectrum MPI implementation,
the optimizations provide no benefit.

Each device-to-device transfer that Spectrum MPI places in the default

stream is followed by a cudaDeviceSynchronize. This has two effects. First,

the default stream has special synchronization semantics with otherwise asyn-

chronous CUDA operations, requiring explicit programmer effort to avoid,

e.g. cudaStreamCreateWithFlags and cudaStreamNonBlocking. Second, the

cudaDeviceSynchronize calls spuriously block other unrelated CUDA oper-

ations (from Spectrum MPI or the application) from occurring in parallel.

This prevents application use of the GPUs from overlapping with Spectrum

MPI’s movement of data to and from the GPU. Figure 4.10 shows the As-

taroth iteration time (both computation and halo exchange) for the baseline

Spectrum MPI CUDA-aware transfer, and with the communication special-

ization described in Section 4.5. Applying the stencil library specializations

on top of the CUDA-aware MPI method does not improve the performance,

since the communications that do involve the CUDA-aware MPI still intro-

duce synchronizations. The staged method avoids this problem by avoiding

Spectrum MPI’s CUDA-aware operations. Section 4.6.5 shows the effect of

the staged method.

4.6.2 Node-Level and GPU-Level Data Placement

Sections 4.3 and 4.4 describe how node-level subgrids are created for each

node, further subdivided into GPU-level subgrids for each GPU. Figure 4.11

shows the normalized Astaroth halo exchange (no compute) latency for three

different placement schemes. “Baseline” refers to a linear assignment of sub-

47

grids to ranks. No node-level subgrids are created, so any neighboring sub-

grids appearing in the same node are purely by chance. “Intra-node Random”

allows the creation of node-level subgrids, so all GPU subgrids within a node

are guaranteed to be from the same node-level subgrid, and therefore highly

localized. Within the node, however, the subgrid positions are randomized,

so neighboring subgrids may have a slow link between them. “Optimized”

allows the full placement scheme described in Section 4.4.

Nodes / Ranks Per Node

N
or

m
al

iz
ed

 L
at

en
cy

0.0

0.5

1.0

1.5

1/1 1/2 1/4 1/6 2/1 2/2 2/4 2/6 4/1 4/2 4/4 4/6 8/1 8/2 8/4 8/6

Baseline Intra-node Random Optimized

Figure 4.11: Normalized Astaroth halo exchange latency for baseline
subgrid placement, intra-node random, and optimized placement.
“Baseline” assigned each subgrid to the rank corresponding to the
linearization of its index. “Intra-node” random creates node-level subgrids,
but randomizes GPU placement within the node. “Optimized” solves the
QAP to place nodes within the subgrid. For multiple nodes, the vast
majority of the benefit comes from inter-node grouping rather than
intra-node placement. To demonstrate the best-case scenario effect,
communication specialization is enabled.

The single-node configurations (1/1, 1/2, 1/4, 1/6) show two effects. The

first is that the default rank-linearized subgrid placement scheme happens to

be the optimal one for this decomposition. Second, it shows that the effect

of randomizing the placement only has negative effects when most GPUs on

the system are utilized. For the 1/1 and 1/2 cases, there is no difference

from default and random. For the 1/4 case, three GPUs in one triplet and a

fourth GPU in another triplet are occupied. In this case, it does not matter

which corner of the 2x2 arrangement of GPU subgrids is placed “far” away.

For the six-GPU configuration (1/6), randomizing the intra-node placement

has a 56% slowdown as neighbors are placed across slower interconnects.

The multi-node configurations show a different set of effects. For the one-

rank-per-node configurations (X/1), all placements are identical. In the 2/2

configuration, the default arrangement happens to be the optimal one. For

48

the other multi-rank configurations, most of the benefit comes from moving

neighbors onto the same node, rather than arranging neighbors within the

node. This is in contrast to the one-node case, where the intra-node place-

ment had a large effect at six subgrids. For the multi-node case, most of the

communication time is consumed by MPI, so there is little relative benefit

for careful intra-node arrangement.

In summary, the vast majority of the benefit comes from inter-node group-

ing rather than intra-node placement.

4.6.3 Data Placement and Communication Method

Section 4.6.2 showed that node-level data placement has a substantial effect

on halo exchange time. This section examines why. Figure 4.12a shows

the share of communication that goes through the staged, colocated, and

kernel methods for different node/rank counts with baseline rank placement

(Figure 4.12a) and optimized rank placement (Figure 4.12b).

For a single node and a single rank, all communication occurs through the

kernel method. Each of the 26 directions is a periodic boundary condition

that “sends” the halo region to the other side of the grid on the same GPU.

When multiple subgrids are on the same node, a larger and larger share of

the communication happens through the colocated method, as more data

is exchanged with on-node neighbor subgrids. Since there is only one node

to place the subgrids on, placement has no effect on the communication

breakdown.

For two nodes, the grid is first decomposed into [2x1x1] node-level subgrids.

When there is only one rank per node, data either goes off-node through the

staged method, or stays in the same subgrid through the kernel method.

Once multiple subgrids are placed on each node, some data stays within the

node but moves to a different subgrid through the colocated method.

For two nodes with less than six ranks, the default placement and library-

optimized placement are identical. This is because both methods yield the

same placement for these particular grid sizes. Some of the communication

always occurs over the staged method, as not all neighbors are on the same

node. With six ranks, library-optimized placement shifts most of the staged

bytes into colocated, showing that the subgrids have been rearranged to keep

49

more communication on-node.

A similar shift from staged to colocated can be seen at all larger sizes

where more than one rank is used per node. At 512 nodes and 6 ranks per

node, the default placement has 27% of communication occurring through

the faster colocated method, while the library-optimized placement increases

that to 47% of the communication.

Nodes / Ranks per Node

C
om

m
un

ic
at

io
n

0%

25%

50%

75%

100%

1/1 1/2 1/6 2/1 2/2 2/6 4/1 4/2 4/6 8/1 8/2 8/6 16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/1

12
8/2

12
8/6

25
6/1

25
6/2

25
6/6

51
2/1

51
2/2

51
2/6

Kernel Colocated Staged

(a) Baseline placement.

Nodes / Ranks per Node

C
om

m
un

ic
at

io
n

0%

25%

50%

75%

100%

1/1 1/2 1/6 2/1 2/2 2/6 4/1 4/2 4/6 8/1 8/2 8/6 16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/1

12
8/2

12
8/6

25
6/1

25
6/2

25
6/6

51
2/1

51
2/2

51
2/6

Kernel Colocated Staged

(b) Proposed stencil communication library placement.

Figure 4.12: Communication amount by method for the Astaroth halo
exchange with baseline or stencil library optimized placement. When more
than one rank is on the node, optimized placement has a larger share of the
communication to occur on-node, opening up the opportunity to optimize
the communication further.

4.6.4 Data Placement and Iteration Time

Section 4.6.3 demonstrated that placing neighboring subgrids on the same

node can allow for faster communication methods. This section further ex-

amines the performance effect of that shift. In contrast to Section 4.6.2, this

section does not attempt to split the difference between inter-node and intra-

node placement effects. All experiments in this section enable both types of

placement, and are restricted to six ranks per node as that fully utilizes each

node.

Astaroth iteration (three integration steps) time is determined by both the

performance of the halo exchange and the GPU kernel time, which can be

overlapped (Section 4.1) to some extent. Figures 4.13, 4.14, and 4.15 show

50

the effect of data placement on the Astaroth iteration time. The figures show

the effect when using the baseline CUDA-aware communication method, the

staged method, and the optimized method (enabling the colocated and kernel

communication shortcuts). All results are normalized to the iteration time

when the baseline CUDA-aware MPI implementation is used.

Nodes / Ranks per Node

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

0.00

0.25

0.50

0.75

1.00

1.25

1 / 6 2 / 6 4 / 6 8 / 6 16 / 6 32 / 6 64 / 6 128 / 6 256 / 6 512 / 6

CUDA-aware (default placement) CUDA-aware

Figure 4.13: Normalized Astaroth iteration time with the default placement
and the stencil library placement using the CUDA-aware communication
method.

Figure 4.13 compares the baseline CUDA-aware method under the default

rank mapping and when the stencil library placement is enabled. For a single

node, there is no effect as there are not multiple nodes to map subregions

to, and the CUDA-aware synchronization hides any effect from the intra-

node placement. When multiple nodes are introduced, more neighbors are

on the same node under the library placement, improving communication

performance. At 512 nodes, this yields a 1.72× speedup.

Nodes / Ranks per Node

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

0.25

0.50

0.75

1.00

1.25

1 / 6 2 / 6 4 / 6 8 / 6 16 / 6 32 / 6 64 / 6 128 / 6 256 / 6 512 / 6

Staged (default placement) Staged

Figure 4.14: Normalized Astaroth iteration time, comparing staged with
default placement and staged with library placement.

Figure 4.14 compares the staged method with both default and improved

placement (normalized to the default). Note that each subgrid has 26 neigh-

51

boring directions, and when there are fewer than 26 ranks, due to the pe-

riodic boundary conditions several of those directions will refer to the same

neighboring rank. As described in Section 4.5.2, the staged communication

method packs all gridpoints required by a single neighbor into a single mes-

sage to that neighbor. Therefore, when there are fewer neighbors, there is

smaller message concurrency.

Three different performance regimes are visible. For a “small” number of

nodes (1-4), enabling placement has a small effect since much of the traffic

is on-node in both cases. For a “medium” number of nodes (8-32), enabling

placement has a relatively large effect. Enough of the communication is off-

node that there is substantial opportunity for placement to bring it back

on. In these scenarios, there are proportionally fewer off-node messages, so

reducing them further with placement has a large effect.

When more than 64 nodes are used, enabling placement produces only a

small speedup again. To understand why, consider the 32-node 6-rank case

with a grid size of [3072 × 2048 × 512] (Table 4.2). This will be divided by

[4x4x2] (32 nodes) to yield [768 x 512 x 256] for each node, which will be

divided by [3 x 2 x 1] (6 GPUs) to yield the expected [256 x 256 x 256] per

GPU. The nodes make a [4x4x2] cuboid, and since the z-extent is 2, each

node’s +z and -z neighbors are the same. At 64 nodes, the node-level cuboid

is instead [4x4x4] and each GPU has a unique neighbor in each of the 26

directions. Despite bringing much of the communication on-node, there is

no placement which can avoid communication with 26 other nodes.

The staged scheme for the 1/6 through 4/6 configurations is limited more

by the lack of parallelism than by the communication bandwidth. As a result,

the placement optimization produces only a modest performance improve-

ment for the staged method. For larger configurations with less than 64

nodes, there is more concurrency and the communication is more limited by

the slow link within each node. Thus, the performance benefit of placement

optimization is more pronounced. For the largest configurations, the per-

formance is limited by the off-node bandwidth. At the 512/6 configuration,

placement yields a 1.09× speedup for staged communication.

Figure 4.15 shows results similar to those of Figure 4.14, except with

communication specialization enabled, instead of restricting to the staged

method. At the 512/6 configuration, placement yields a 1.22× speedup.

This is more than double the speedup for the staged method, since on-node

52

Nodes / Ranks per Node

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

0.25

0.50

0.75

1.00

1.25

1 / 6 2 / 6 4 / 6 8 / 6 16 / 6 32 / 6 64 / 6 128 / 6 256 / 6 512 / 6

Specialized (default placement) Specialized

Figure 4.15: Normalized Astaroth iteration time, comparing CUDA-aware
with default placement, specialized communication with default placement,
and specialized communication with library placement.

communication is faster with specialization enabled.

4.6.5 Specialization and Iteration Time

This section considers the incremental effects of communication specialization

once data placement is enabled. Figure 4.16 shows how the various optimized

communication methods influence iteration time for different node and ranks-

per-node configurations.

Nodes / Ranks per Node

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

0.50

0.75

1.00

1.25

1/1 1/2 1/6 2/1 2/2 2/6 8/1 8/2 8/6 32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

51
2/1

51
2/2

51
2/6

CUDA-aware Staged Staged+Colocated Staged+Colocated+Kernel

Figure 4.16: Astaroth iteration time normalized to the baseline
CUDA-aware implementation with data placement for various node/rank
configurations. Results for 4 nodes (not shown) are substantially similar to
2 nodes, 16 nodes (not shown) are similar to 32 nodes, and 128 and 256
nodes (not shown) are similar to 512 nodes.

First, switching away from the baseline CUDA-aware implementation to

the staged method has varying effects. When the 26 neighbor directions are

53

distributed among fewer than 26 neighbor ranks, switching to the staged

method has the smallest improvement (or largest deficit). The baseline im-

plementation introduces spurious synchronization, so when there are fewer

messages, the effect of removing this synchronization is smaller. Once each

subgrid communicates with 26 unique neighbors, the staged implementation

is better able to exploit concurrency across messages.

The kernel optimization only has an effect when the number of nodes

is small. This corresponds to decompositions where subgrids have self-

communication.

The colocated specialization only has an effect when there is more than one

rank per node, and in that scenario, it brings most of the further performance

improvement.

There is an intermediate regime of 8-32 nodes where specialization does

not bring any improvement. This seems to be the window where there are few

enough messages that the baseline CUDA-aware’s concurrency limitations do

not negatively affect performance.

In the 512/6 node configuration, full specialization yields a 1.44× speedup

after placement is enabled.

4.6.6 Overall Improvement

Figure 4.17 shows the results of combining placement and optimization. The

observations made in Sections 4.6.4 and 4.6.5 are all visible here. In all cases,

data placement combined with specialization yields speedup over the baseline

CUDA-aware implementation. At the 512/6 configuration, total speedup is

2.5×.

Figures 4.18 and 4.19 show the effect of replacing the Astaroth communi-

cation code with the stencil library. Astaroth uses a Morton-indexed subgrid

placement, capturing some locality among nodes, and uses cudaIpc* func-

tions for intra-node communication. The stencil library manages to improve

on the baseline with a more general placement algorithm that supports non-

power-of-two process counts, and achieves better overlapping of intra-node

and inter-node communication. In the 512/4 configuration, the halo exchange

speedup is 1.48×.

The overall iteration time improvement vs. Astaroth is lower. For smaller

54

Nodes / Ranks per Node

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

0.25

0.50

0.75

1.00

1.25

1 / 6 2 / 6 4 / 6 8 / 6 16 / 6 32 / 6 64 / 6 128 / 6 256 / 6 512 / 6

CUDA-aware (default placement) CUDA-aware Staged (default placement) Staged
Specialized (default placement) Specialized

Figure 4.17: Joint effect of placement and specialization on Astaroth
iteration time, normalized to the CUDA-aware communication with default
subgrid placement. “Specialized” refers to enabling the staged colocated
and kernel methods.

grids, the computation time dominates. At scale, the communication is more

relevant, and the stencil library achieves 1.45× speedup in the 512/4 con-

figuration, almost identical to the pure halo-exchange speedup. Geometric

mean halo exchange speedup is 1.3×, and overall iteration time is 1.17×.

Nodes / Ranks Per Node

N
or

m
al

iz
ed

 E
xc

ha
ng

e
Ti

m
e

0.5

1.0

1.5

2.0

1/
1

1/
2

1/
4

2/
1

2/
2

2/
4

4/
1

4/
2

4/
4

8/
1

8/
2

8/
4

16
/1

16
/2

16
/4

32
/1

32
/2

32
/4

64
/1

64
/2

64
/4

12
8/

1
12

8/
2

12
8/

4
25

6/
1

25
6/

2
25

6/
4

51
2/

1
51

2/
2

51
2/

4

ge
om

Stencil Library Astaroth

Figure 4.18: Astaroth halo exchange time, normalized to the stencil library.
“geom” is the geometric mean of the corresponding series.

4.6.7 Test Simulation

Integration between the Astaroth integration kernels and the stencil library

communication routines was verified through a rudimentary simulation. It

allows for verification of correct physical properties, without introducing

enough complex features to obfuscate the correctness of the exchange. In

this way, it serves as an additional layer of verification to complement vari-

55

Nodes / Ranks Per Node

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

0.5

1.0

1.5

2.0

1/
1

1/
2

1/
4

2/
1

2/
2

2/
4

4/
1

4/
2

4/
4

8/
1

8/
2

8/
4

16
/1

16
/2

16
/4

32
/1

32
/2

32
/4

64
/1

64
/2

64
/4

12
8/

1
12

8/
2

12
8/

4
25

6/
1

25
6/

2
25

6/
4

51
2/

1
51

2/
2

51
2/

4

ge
om

Stencil Library Astaroth

Figure 4.19: Astaroth iteration time, normalized to the stencil library.
“geom” is the geometric mean of the corresponding series.

ous individual unit and functionality tests. A domain of 643 gridpoints per

GPU was constructed. The origin is set at the center of the lower half (Z

direction) of the domain in Figure 4.20. The entropy and magnetic field

quantities of each grid point are initialized with a uniform random distri-

bution in the range [0, 1). The density quantity is initialized to a constant

0.5, and the three velocity components (X,Y,Z) are initialized to a “Gaussian

explosion.”

The velocity vector u is stored in three quantities ux, uy, and uz, represent-

ing the X, Y, and Z components respectively. The velocity vector quantities

ux, uy, and uz at coordinate x,y,z are initialized in terms of polar coordinates

into a pattern to facilitate visualization as follows:

The radius r is given by

r =
√
x2 + y2 + z2

the polar angle θ is given by

θ =

acos(z/r) z ≥ 0

π − acos(−z/r) z < 0

56

and the azimuthal angle φ is given by

φ =

atan(y/x) x > 0, y > 0

π − atan(−y/x) x < 0, y ≥ 0

2π − atan(−y/x) x > 0, y < 0

π + atan(y/x) x < 0, y < 0

π/2 x = 0, y > 0

3π/2 x = 0, y < 0

0 x = 0, y = 0

The radial magnitude ū is given by

ū = A× e−1× (r−R)2

2×W2

where A controls the amplitude of the velocity, R controls the shell radius,

and W the shell width. Finally, the initial condition values of the velocity

vector components are given by

ux = ū× sin θ × cosφ

uy = ū× sin θ × sinφ

uz = ū× cos θ

Figure 4.20 shows a visualization of a small test case. Two GPUs partici-

pate, yielding a 64×64×128 grid, with the largest extent in the Z direction.

The explosion is centered on the -X face so that effects are visible on the sur-

face; effectively, only the +X half of the explosion is in the simulated region.

The explosion is positioned so that it crosses the boundary region covered

by the halo exchange. Any errors in the halo exchange code will cause visi-

ble artifacts. Figures 4.20a and 4.20b show the Y and Z components of the

velocity vector initialization. Figure 4.20c shows the result on the density

after a single iteration. No artifacts are visible, demonstrating a successful

integration of the halo exchange library code. Furthermore, the simulation

results are qualitatively sound, and match the unmodified Astaroth results.

The leading edge of the explosion where the stellar medium is compressed

57

features higher density. The trailing edge features lower density.

(a) Velocity vector Y
component (t = 0s).

(b) Velocity vector Z
component (t = 0s).

(c) Resulting density
distribution
(t = 1× 10−8s)

Figure 4.20: Visualization of the -X face of the simulated region, showing
velocity vector Y (a) and Z (b) components at simulation time t = 0, and
density (c) after one iteration, at t = 1× 10−8. The initial conditions
represent a “Gaussian explosion” centered on the -X face of the simulated
region. The X component of the velocity vector is not shown as it is only
non-zero “inside” the simulated region.

4.7 Conclusion

This chapter described how some of the lessons from detailed multi-GPU

communication measurement can be applied to an actual scientific applica-

tion.

Specifically, the lessons were applied to a distributed stencil library, where

the user provided the desired compute domain, data quantities, and sten-

cil shape, and the library derives the highest-performance communication

strategy based on the properties of the system

First, information about the stencil grid was used to partition the subgrid

(Section 4.3). Then, an intra-node placement strategy was applied to max-

imize interconnect bandwidth utilization (Section 4.4). Once neighboring

subgrids were placed on the same node, specialized communication shortcuts

were implemented to help realize the theoretical bandwidth that drove the

placements (Section 4.5).

58

The chapter then examined the extent to which those optimizations af-

fected the actual application performance. The test-case was a large GPU-

accelerated distributed 3D stencil code, Astaroth. At scale of 512 nodes with

3072 GPUs, subgrid placement was found to contribute to a speedup of 1.72×
compared to the baseline CUDA-aware implementation, 1.09× for the staged

method, and 1.22× with specialized communication enabled. With data-

placement enabled, communication specialization was found to contribute a

1.43× speedup. Overall, the iteration time was improved by 2.5× over the

baseline CUDA-aware implementation. Over a variety of configurations, the

stencil library was able to improve existing Astaroth halo exchange time by

geometric mean of 1.3×, and the iteration time by 1.17×.

In summary, there are two complementary pathways to speeding up per-

formance. For the first pathway, it is crucial to minimize off-node commu-

nication. This was seen to be important in relieving the poorly performing

CUDA-aware Spectrum MPI implementation of as much work as possible. It

was also important when the on-node communication is fast, in the case of

specialization. Using the staged method resulted in only a minor speedup.

The second approach is to provide fast on-node GPU-GPU communication

methods. Thanks to the iterative nature of the stencil, direct GPU-GPU

communication channels can be quickly configured at the beginning of the

application, and then re-used each iteration.

59

Table 4.2: Stencil grid dimensions for Astaroth node / ranks per node
configurations. These dimensions ensure that each GPU has exactly 2563

grid points under the different grid decomposition strategies.

Ranks Astaroth w. Stencil Library Unmodified Astaroth
Nodes Per Node X Y Z X Y Z

1

1 256 256 256 256 256 256
2 512 256 256 256 256 512
4 512 512 256 256 512 512
6 768 512 256 – – –

2

1 512 256 256 256 256 512
2 1024 256 256 256 512 512
4 1024 512 256 512 512 512
6 1536 512 256 – – –

4

1 512 512 256 256 512 512
2 1024 512 256 512 512 512
4 1024 1024 256 512 512 1024
6 1536 1024 256 – – –

8

1 512 512 512 512 512 512
2 1024 512 512 512 512 1024
4 1024 1024 512 512 1024 1024
6 1536 1024 512 – – –

16

1 1024 512 512 512 512 1024
2 2048 512 512 512 1024 1024
4 2048 1024 512 1024 1024 1024
6 3072 1024 512 – – –

32

1 1024 1024 512 512 1024 1024
2 2048 1024 512 1024 1024 1024
2 2048 2048 512 1024 1024 2048
6 3072 2048 512 – – –

64

1 1024 1024 1024 1024 1024 1024
2 2048 1024 1024 1024 1024 2048
4 2048 2048 1024 1024 2048 2048
6 3072 2048 1024 – – –

128

1 2048 1024 1024 1024 1024 2048
2 4096 1024 1024 1024 2048 2048
4 4096 2048 1024 2048 2048 2048
6 6144 2048 1024 – – –

256

1 2048 2048 1024 1024 2048 2048
2 4096 2048 1024 2048 2048 2048
4 4096 4096 1024 2048 2048 4096
6 6144 4096 1024 – – –

512

1 2048 2048 2048 2048 2048 2048
2 4096 2048 2048 2048 2048 4096
4 4096 4096 2048 2048 4096 4096
6 6144 4096 2048 – – –

60

Chapter 5

Non-contiguous Data Optimization for MPI

The main strength of the library-based approach in Chapter 4 is also its

main weakness; with complete flexibility to define the halo-exchange inter-

face comes the requirement for existing applications to be rewritten to use it.

Due to the challenges and opportunities identified in the previous chapter, the

Astaroth code took a similar route, implementing their own specialized com-

munication layer to improve performance. In Section 4.6, the Astaroth [49]

communication layer was replaced with the stencil library, effectively a re-

write of a major application component. Even though the results show that

much performance improvement can be gained with this re-write, its is un-

likely that the developers of existing applications will spend the effort to

rewrite and retest a significant portion of their applications.

A different approach is to determine how to fit the high-performance as-

pects of the stencil library into MPI itself. Any application that uses the

same parts of the MPI interface would readily benefit. The disadvantage is

that the MPI interface places some constraints on the capability and this the

achievable performance improvement of the implementation.

Instead of creating a full MPI implementation to examine some of these

questions, this chapter uses the Topology Experiments for MPI (TEMPI)

library developed by the author. TEMPI is an interposer library inserted into

the application link order before the system MPI library. MPI symbols will

be resolved in the TEMPI library, allowing new functionality to be executed

instead of (or in addition to) the system MPI implementation. TEMPI is

intended as a vehicle for adding experimental modifications to MPI without

the burden of creating a new MPI implementation or modifying an existing

one. If a concept proves to be useful in TEMPI, it could then be integrated

into an existing MPI. This is similar to the MPI Profiling Interface (PMPI

functions), except we do not rely on the profiling interface existing, and

TEMPI can be chained with other PMPI-based tools.

61

This chapter describes how lessons from Chapters 3 and 4 can be gener-

alized into MPI. TEMPI provides several transparent transformation layers

between the application and the system MPI. First, TEMPI transforms non-

contiguous application data to contiguous data presented to the underlying

system MPI. Second, TEMPI re-numbers system MPI ranks to improve lo-

cality. Third, TEMPI transparently switches data-packing operations based

on empirical performance measurements. These operations are evaluated

through microbenchmarks and the Astaroth halo exchange.

The experiments are carried out on three MPI implementations spanning

two hardware platforms summarized in Table 5.1. All multi-node perfor-

mance is evaluated using Spectrum MPI on OLCF Summit. For intra-node

operations, performance is also evaluated on the single-node openmpi and

mvapich platforms. The mvapich platform does not use MVAPICH-GDR,

which integrates some prior work by Chu et al. [56, 57], but requires [34] Mel-

lanox networking hardware and drivers despite their irrelevance to datatype

handling.

Table 5.1: Experimental platform summaries

Name OLCF Summit openmpi mvapich
MPI Spectrum MPI 10.3.1.2 OpenMPI 4.0.5 MVAPICH 2.3.4
CPU IBM POWER 9 AMD Ryzen 7 3700x
GPU Nvidia V100 Nvidia GTX 1070
nvcc 11.0.221 11.1.105
gcc 9.3.0 10.2

GPU Driver 418.116.00 455.32.00

First, Section 5.1 describes two ways the Astaroth communication pattern

can be implemented in pure MPI. Section 5.2 describes how MPI Derived

Datatypes can encode the information required for packing/unpacking. It

also describes how derived datatype support is limited on GPUs, and pro-

poses a robust approach for handling regular strided types. Next, Sections 5.3

through 5.6 describe how datatype handling is integrated with MPI, through

the MPI Type commit, MPI Pack, MPI Send, and MPI Isend functions, and

evaluate the integration with some microbenchmarks. Section 5.7 describes

how data placement is implemented through MPI Dist graph create adja-

cent. Section 5.8 describes the design of the TEMPI library which imple-

ments the experimental code. Finally, Section 5.9 presents an evaluation

using the Astaroth communication pattern. Section 5.10 concludes.

62

5.1 Astaroth Communication in MPI

In Chapter 4, a custom library was responsible for data placement, fast

handling of non-contiguous data, and overlapping of independent commu-

nications. Astaroth chose a custom implementation to avoid limited MPI

performance for this scenario, same as the replacement stencil library from

that chapter. Instead of modifying the Astaroth code again, this chapter re-

stricts its evaluation to MPI implementations of the communication pattern

only, as Chapter 4 found that at scale, the iteration time was dominated

by the communication time. To that end, two custom pure-MPI implemen-

tations of the GPU stencil grid data and the halo-exchange communication

were created, without any corresponding computation kernels.

5.1.1 Data Placement

The abstraction in the stencil library did not expose communication in terms

of MPI ranks, and therefore allowed the library to choose which MPI ranks

should take which subgrids based on their proximity in the machine. In

an MPI implementation there is no such abstraction, and it is typical for

logical position among the work decomposition to be determined by rank.

Unfortunately, there is no a priori relationship between an MPI rank number

and position in the machine (though this can be adjusted at launch time

outside the application code).

MPI Dist graph create adjacent is one standardized way to solve this prob-

lem within the application code. That function creates a new communicator

with attached topology information, i.e., which ranks are logically neighbors.

The caller can optionally indicate that they want MPI to reorder the ranks.

This allows the MPI implementation to change the rank numbering to place

neighboring ranks closer together than they would otherwise be.

Figure 5.1 shows an example. Consider a system with two nodes and

two processes per node (A/B and C/D respectively). When MPI Init is

called, ranks are assigned to the processes in some arbitrary way. In this

example, this creates the MPI COMM WORLD communicator with rank 0

on process A, through rank 3 on process D. The application can analyze the

problem domain and decide that ranks 0 and 2 will communicate heavily,

while ranks 0 and 1 will not. The application will provide that information

63

Figure 5.1: Example of MPI Dist graph create adjacent being called with
rank edge weights, and producing a reordered communicator. The function
produces a new communicator (graph communicator) where
MPI COMM WORLD ranks 0 and 2 are on the same node.

to MPI Dist graph create adjacent in the form of edge weights, and allow the

function to reorder ranks. This creates a new communicator with (possibly)

reordered ranks - i.e., process A is rank 2 in the new communicator (and

still rank 0 in MPI COMM WORLD). As requested, ranks 0 and 2 in the

new communicator are close together in Processes A and B, as are ranks

1 and 3 in Processes C and D. In the original arbitrary placement, ranks

0 and 2 were on separate nodes. There is no standardized way for MPI

ranks to query their distance from one another, so this reordering process is

the only standardized way to programmatically take advantage of machine

topology in pure MPI. Note that the state of the process (A) which was rank

0 in MPI COMM WORLD is present in rank 2 in the new communicator -

actual process data is not moved automatically.

MPI Dist graph create adjacent has a second benefit - the topology infor-

mation enables sparse collectives called “neighborhood” collectives. In these

collectives, each rank only exchanges data with its neighbors in the graph,

instead of all ranks in the communicator.

5.1.2 MPI Neighbor alltoallv and MPI Isend

Once communicating ranks are placed within the same node, the next step is

the communication implementation. In general, the stencil communication is

64

quite sparse, with each rank communicating with at most 26 others. At the

largest scales evaluated in this chapter (3072 ranks), each rank communicates

with less than 1% of the other ranks. The MPI collectives are not a good

fit for this operation, as most of the send/receive “counts” describing how

much data is exchanged will be 0.

The “alltoallv” method takes advantage of the sparse communicator cre-

ated by MPI Dist graph create adjacent, and splits each halo exchange into

three phases. First, repeated calls to MPI Pack are used to fill a send buffer

with the packed halo data to send to each rank. Second, MPI Neighbor all-

toallv collective is used to exchange data with all neighbors. Third, repeated

calls to MPI Unpack move the data from the receive buffer into the grid.

The “Isend” method uses a paired Isend/Irecv in each direction to move

the halo data. Each Isend/Irecv pair therefore handles a different datatype,

with communications hopefully overlapped. The communication sparsity is

captured by only creating a send/receive pair between communicating ranks.

5.1.3 Non-Contiguous Data

The final piece of the puzzle is handling the non-contiguous data for the halo

exchange. MPI Derived Datatypes [30] are an abstraction for describing the

layout of non-contiguous data in memory. They allow MPI functions to op-

erate on such data without intermediate handling by the user application,

especially packing the data into a contiguous buffer before transfer. As GPUs

have become a dominant high-performance computing accelerator, MPI im-

plementations such as OpenMPI [32], MVAPICH [58], Spectrum MPI [31]

and MPICH [33] have become “CUDA-aware”. In such implementations MPI

can directly operate on CUDA device allocations to streamline application

development and potentially accelerate inter-rank transfers of GPU-resident

data.

MPI datatypes can be composed to describe multi-dimensional strided

objects. This work consideres the following “strided” datatypes due to their

applicability to stencil codes:

• “Predefined” or “named”[30, §3.2.2]: these are the base MPI data-

types (MPI BYTE, MPI FLOAT, etc.) that correspond to various C

or FORTRAN types.

65

• “Contiguous”[30, §4.1.2]: these describe “replication of a datatype

in contiguous locations.” MPI Type contiguous(n, oldtype, newtype):

newtype is n contiguous repetitions of oldtype.

• “Vector/Hvector”[30, §4.1.2]: these describe “replication of a datatype

into...equally spaced blocks.” MPI Type vector(c, l, s, oldtype, new-

type): newtype is a vector of c blocks, each block is l contiguous rep-

etitions of oldtype and the beginning of each block is separated by s

contiguous repetitions of oldtype. For hvector, s is given in bytes in-

stead.

• “Subarray”[30, §4.1.3]: these describe “n-dimensional subarray of an n-

dimensional array.” MPI Type create subarray(n, {sizes}, {subsizes},
{offsets} order, oldtype, newtype): newtype is an n-dimensional subar-

ray of an oldtype array with extent sizes. The subarray is of extent

subsizes at offset offsets. Order controls C or FORTRAN ordering.

These types may be composed in many ways to describe the same non-

contiguous bytes. For example, consider the 3D object in Figure 5.2, which

can be visualized as a three-dimensional sub-object of an enclosing three-

dimensional object, where the sub-object shares an origin with the enclosing

object and each element of the object is a single-precision floating-point num-

ber (an MPI FLOAT), consuming four bytes.

Figure 5.2: A 3D object with extent E0 × E1 × E2 floats in an allocation
A0 × A1 × A2 bytes, and the corresponding linearized memory layout.

Each 1D row of the object (E0 × 4 contiguous bytes) to be described in

66

many ways; a non-exhaustive list follows (meanings of function parameters

described in the bulleted list above):

• MPI Type contiguous(E0, MPI FLOAT, &row): “row” comprises a

contiguous replication of E0 single-precision floating-point (4-byte) el-

ements.

• MPI Type contiguous(E0 × 4, MPI BYTE, &row): “row” is E0 × 4

1-byte elements.

• MPI Type vector(1, E0, 1, MPI FLOAT, &row)

• MPI Type vector(E0, 4, 4, MPI BYTE, &row)

• MPI Type create hvector(E0 × 4, 1, 1, MPI BYTE, &row)

• MPI Type create subarray(1, {A0}, {E0}, {0}, MPI ORDER C, MPI -

FLOAT, &row)

• MPI Type create subarray(1, {A0×4}, {E0×4}, {0}, MPI ORDER C,

MPI BYTE, &row)

These are equivalent for describing a single row, but are not entirely inter-

changeable since their extents vary. This distinction is relevant for certain

compositions of these types (e.g., below), or when multiple types are manip-

ulated at once.

A 2D plane (E1 rows, offset by A0 bytes between the beginning of each

row) can be constructed directly from named types:

• MPI Type vector(E1, E0, A0, MPI FLOAT, &plane)

• MPI Type vector(E1, E0 × 4, A0, MPI BYTE, &plane)

• MPI Type create subarray(2, {A0, A1}, {E0, E1}, {0, 0}, MPI ORDER -

C, MPI FLOAT, &plane)

• MPI Type create subarray(2, {A0×4, A1}, {E0×4, E1}, {0, 0}, MPI -

ORDER C, MPI BYTE, &plane)

or alternatively, as an hvector of rows:

• MPI Type create hvector(E1, 1, A0, row, &plane)

67

or for the subarray row types:

• MPI Type vector(E1, 1, 1, row, &plane)

• MPI Type create subarray(1, A1, E1, 0, MPI ORDER C, row, &plane)

Similarly planes comprise a cuboid (E2 planes, offset by A0 × A1 bytes

between the beginning of each plane). For example,

• MPI Type create hvector(E2, 1, A0 × A1, plane, &cuboid)

• MPI Type create subarray(2, {A0, A1, A2}, {E0, E1, E2}, {0, 0, 0},
MPI ORDER C, MPI FLOAT, &cuboid)

• MPI Type create subarray(2, {A0 × 4, A1, A2}, {E0 × 4, E1, E2},
{0, 0, 0}, MPI ORDER C, MPI BYTE, &cuboid)

Such a three-dimensional datatype can be used to describe the halo regions

in a three-dimensional stencil code.

5.2 MPI Strided Datatype Handling

MPI provides a facility designed for operating on the non-contiguous data of

the stencil halo exchange region: MPI derived datatypes [30] (“datatypes”).

A datatype can be used to tell MPI which bytes make up a particular non-

contiguous region of memory. More detailed information about the semantics

of relevant datatypes is described in Section 5.1.3.

Each datatype can be considered as a list of contiguous blocks, where

each block is defined by an offset and a size. Many prior works start with

such a representation as the foundation [59, 60, 61, 56, 62], occasionally

with additional optimization [63]. The weakness of this approach is that

representing datatype may consume as much GPU memory as the datatype

itself.

Consider such a type describing N non-contiguous blocks of M MPI -

FLOATs. To support objects dispersed across large address ranges, the block

offset and size would be 8 bytes each, yielding at least 16×N bytes to rep-

resent M × N × 4 bytes of data. If M is relatively small (common for any

higher-dimension object) the representation will consume about the same

68

amount of memory as the data itself. This has two effects. First, any op-

eration must access as much metadata as object data, necessarily slowing

the operation. For example, if the operation is memory-bandwidth limited

(MPI Pack), the memory bandwidth must be split between metadata and

data access. Second, the metadata may consume as much space as the ob-

ject itself, limiting GPU memory available to other applications. For a stencil

code, this effect will be minor since the exchanged data is much smaller than

the total subgrid data.

Further datatype optimizations include specialization for types with cer-

tain kinds of regularity [59, 60, 61]. These naturally lend themselves to

specific compact representations, e.g. an MPI vector of any size as only a

block length, block count, and stride. The combinatorial explosion of equiv-

alent representations renders the strategy of specialized kernels infeasible in

general. Figure 5.3 shows MVAPICH exhibiting this behavior. MVAPICH

is fast for vectors, but slow for equivalent subarray types. Similarly, MVA-

PICH’s fast vector handling is disabled when multiple objects are packed at

once. TEMPI features equivalent high performance in all scenarios.

Count / Contiguous Block length (B)

La
te

nc
y

(u
s)

1

10

100

1000

10000

1 / 1 1 / 8 1 / 128 1 / 256 2 / 1 2 / 8 2 / 128 2 / 256

TEMPI mvapich vector mvapich subarray

Figure 5.3: TEMPI and MVAPICH latency for MPI Pack on one and two
1 KiB 2D objects in GPU memory. MVAPICH has specialized handling for
a single vector but slows for subarrays or multiple vectors. TEMPI’s
transformation phase causes all equivalent descriptions to be treated
equally quickly.

Other works present sophisticated approaches for handling arbitrary data-

types on the GPU [63, 56]. This section presents a middle ground between

the block-list form and more specific or elaborate constructions through the

observation that that compositions of contiguous, vector, hvector, and subar-

ray types are all special cases of the same object, and that object is suitable

for compact representation. A translation phase converts the datatype into

an in-memory representation (Section 5.2.1), a canonicalization phase gener-

69

ates a simplified representation (Section 5.2.2), and a parameterized kernel is

selected to pack and unpack the data transparently (Section 5.2.3). This af-

fords wide coverage of structured non-contiguous data without performance

fragility of specialized kernels or large metadata sizes for arbitrary datatype

handling.

5.2.1 Type Translation

The first phase of the datatype handling process is to convert a fully specified

MPI derived datatype into a Type hierarchy, which represents a (possibly

non-contiguous) set of bytes from a memory region. Each Type level has a

field data of TypeData, which represents information about the level. Each

Type also tracks zero or one child Type levels. The Type hierarchy and its

children describe the MPI datatype, where the order of the hierarchy matches

the hierarchy of the constructed MPI datatype.

The IR currently includes two kinds of TypeData: DenseData for con-

tiguous bytes, and StreamData for strided patterns of a single child Type.

DenseData plays the same role as a named type in MPI: it represents a

sequence of contiguous bytes and has no children.

1. DenseData

(a) integer offset, the number of bytes between the lower bound and

the first byte of the Type

(b) integer extent, the number of contiguous bytes in the Type

2. StreamData, a strided sequence of elements of the child type

(a) integer offset, as DenseData

(b) integer stride, the number of bytes between elements

(c) integer count, the number of elements in the stream

This is done by converting each MPI datatype to a corresponding Dense-

Data or StreamData node, and then recursively doing the same to its child

before attaching them to the converted node. The recursive base case is when

an MPI Named type is reached, which by definition has no children.

70

An MPI named type (MPI INT, etc.) is translated into a DenseData with

the extent field equal to the extent of the named type, and offset 0. A named

type is not a derived type, so it has no children.

An MPI contiguous type (MPI Type contiguous) is a special case of Stream-

Data where the stride matches the size of the element. It is not DenseData

as oldtype may not be dense. Offset is 0, stride equal to the extent of the

oldtype argument, and count equal to the count argument.

An MPI vector (MPI Type vector) or hvector (MPI Type create hvector)

are translated into two nested StreamData, a “parent” and “child”. The

parent represents the repeated blocks, and the child the repeated elements

within each block. Both offsets are 0. The child count is the vector block-

length, and the child stride is the extent of oldtype. The parent count is the

vector count, and the parent stride is the child stride times the vector stride.

For hvector the parent stride is given directly in the hvector stride argument

and does not need to be computed.

An MPI subarray (MPI Type create subarray) is a set of nested Stream-

Data equivalent to the dimension of the subarray. MPI subarray arguments

are provided inner-to-outer, which corresponds to a descendant-ancestor re-

lationship in the Type tree. The count of dimension i is provided by the

corresponding subarray subsize. The stride of dimension i is the product of

the MPI extent of the subarray oldtype and the i−1 preceding subarray sizes.

The offset of each dimension is given in terms of elements and is converted

to bytes for the TypeData.

Figure 5.4 shows three different MPI C snippets to create the 3D object

described in Figure 5.2.

5.2.2 Type Canonicalization

The construction of the Type tree described in Section 5.2.1 yields a hierarchy

of StreamData with a base of DenseData. Since each level of the datatype

has a direct correspondence in the Type hierarchy, semantically equivalent

datatypes may have different Types. In order to provide fast handling of

equivalent types, these various representations are canonicalized.

Four transformations are used to canonicalize the Type tree. “Dense fold-

ing” collapses DenseData into a parent StreamData. “Stream elision” re-

71

Figure 5.4: Three different MPI C fragments to generate the 3D object
from Figure 5.2 with A0 = 256, A1 = 512, A2 = 1024, E0 = 100, E1 = 13,
and E2 = 47. The right-hand side shows the corresponding Type IR after
translation, with parent TypeData above child TypeData. Equivalent
objects can be represented differently and require a later transformation
pass.

moves a StreamData representing a stream of one element. “Stream flatten-

ing” combines two StreamData that could be represented as one. “Sorting”

ensures the StreamData have a unique order. The optimizations are applied

repeatedly in turn, only terminating when neither optimization would mod-

ify the Type hierarchy. Algorithm 1 summarizes the overall simplification

process.

Algorithm 1: simplify

Function simplify(ty):
simplified ← ty
changed ← TRUE
while changed do

changed ← FALSE ∨ dense folding (simplified) . in-place

changed ← changed ∨ stream elision (simplified) . in-place

changed ← changed ∨ stream flatten (simplified) . in-place

changed ← changed ∨ sort (simplified) . in-place

end
return ty

Dense folding is driven by the observation that stride of a StreamData may

match the extent of a child DenseData. Such a configuration represents a

stream of repeated contiguous dense elements. In that case, the DenseData

extent can be “folded” up into the StreamData, and the pair can be repre-

sented as a single DenseData node. This scenario may arise when an MPI

vector, subarray, or contiguous type is used to describe a contiguous region

72

larger than any MPI named type.

Figure 5.5: Example of dense folding. When the extent of a DenseData
matches the stride of a parent StreamData, the parent/child combination
can be replaced with a single larger DenseData.

Algorithm 2 shows how the transformation is applied to a Type, and Figure

5.5 shows an example. The transformation is applied to each Type node of

the Type tree in a depth-first order. At each node, the transformation only

applies if the node (ty) is a StreamData kind and the node’s child (child) is

a DenseData. If the parent’s stride matches the child’s extent, the parent is

replaced with a larger DenseData node that represents the entire contiguous

stream. The child’s offset is increased to include any offset the parent had.

Stream elision canonicalizes a case where a stream has only a single el-

ement. Consider ty, a StreamData with a child StreamData whose count

count is one. In such a case, child is a single element and can be elided. This

construction arises in the case of an MPI vector with blocklength 1 dimension

with subsize 1.

Algorithm 3 shows how the transformation is applied to a Type, and Figure

5.6 shows an example. Like with dense folding, stream elision is applied

separately to each Type node in a depth-first order. After that, if both the

type ty and its child child are StreamData, then if the child has count of 1,

the child is replaced with its own children.

Stream flattening canonicalizes the case where a pair of nested streams

could be represented as a single stream. Consider a child StreamData with

a count A and a stride B. If the parent StreamData has a stride that is

a product of A and B, that means multiple children are separated by the

child’s stride. In such a case, the parent and child can be flattened into a

single StreamData with a larger count.

73

Algorithm 2: dense folding from Alg. 1

Function dense folding(ty):
changed ← FALSE
for child of ty do

changed ∨ dense folding(child) . fold from bottom up

end
if ty.data is not StreamData then

return changed
end
Type child = ty.children[0]
if child.data is not DenseData then

return changed
end
StreamData cData ← child.data
StreamData pData ← ty.data
if cData.extent == pData.stride then

changed ← TRUE
cData.off ← cData.off + pData.off
cData.extent ← pData.count × pData.stride
ty ← child . replace ty with child

end
return changed

Algorithm 4 shows how the transformation is applied to a Type, and Figure

5.7 shows an example. This operation has some overlap with stream elision.

Stream elision handles the specific case when the child’s count is 1, which lifts

the restriction on the child and parent stride relationship in stream flattening.

Sorting canonicalizes the ordering of a pair of nested streams is arbitrary.

For example, consider a 2D non-contiguous object. That object could be

constructed as columns of rows of blocks, or rows of columns of blocks. To

canonicalize this case, the StreamData hierarchy is sorted by stride, with the

largest strides first in the hierarchy and the smaller strides last.

This IR can be extended with additional types and transformations in

the future to handle MPI’s indexed types. However, in its current form, it

always provides a common canonicalization of two equivalent regular data-

types. Canonicalization requires that any two equivalent descriptions would

end in a form that cannot be further reduced, and that there is only one form

to represent a description that cannot be further reduced.

Note that transformations maintain the fundamental structure of the IR:

The base of the IR structure is a DenseData, and above it are zero or more

StreamData. Dense folding either replaces the base DenseData and parent

StreamData with an equivalent DenseData, or makes no changes. Stream

74

Figure 5.6: Example of stream elision. When a child StreamData has only a
single element, it can be removed from the Type tree.

elision and stream flattening either replace two StreamData with a single

equivalent StreamData, or make no changes. Sorting does not change the

number of StreamData, only their order.

A characteristic of MPI datatypes is that additional components cannot

remove any existing non-contiguous bytes from the object. They either leave

it the same (effectively representing a single instance of its child) or add more

bytes (multiple child instances). This introduces a redundancy challenge for

canonicalization, i.e., a StreamData may contribute no new bytes to the

object. In fact, any such object has an infinite number of possible descrip-

tions since an infinite number of redundant MPI datatypes (and therefore

StreamData) can be added. Each non-sorting transformation can be viewed

as removing a single such addition that did not actually expand the repre-

sentation. Dense folding removes all StreamData that were used to create

larger DenseData regions that do not correspond to a single MPI named

type. Stream elision removes all StreamData that represent a single child

element. Stream flattening combines StreamData when they could together

have been represented by a single StreamData. After the transformations,

the only possible hierarchy is the simplest one where each StreamData adds

some new bytes to the object.

The final challenge is that MPI datatypes impose no particular order on the

construction of the object. This is another way in which two identical objects

can have different representations. The sorting transformation chooses an

75

Algorithm 3: stream elision from Alg. 1

Function stream elision(ty):
changed ← FALSE
for child of ty do

changed ← changed ∨ stream elision(child) . bottom up

end
if ty.data is not StreamData then

return changed
end
Type child = ty.child
if child.data is not StreamData then

return changed
end
StreamData cData ← child.data
if 1 == cData.count then

changed ← TRUE
ty.child ← child.children . delete child

end
return changed

arbitrary canonicalization of this case, ordered by stride.

The properties of redundancy and arbitrary ordering are what fundamen-

tally make the canonicalization necessary. Dense folding, stream elision, and

stream flattening all remove any redundancy that is added to the datatype.

With redundancy removed, sorting removes any remaining arbitrary ordering

of the datatype. This yields an IR with a form that cannot be further trans-

formed, and causes all cases of redundant information and arbitrary ordering

to be canonicalized to the same form.

5.2.3 Kernel Selection

Once the type is canonicalized, it is converted into a StridedBlock structure.

The StridedBlock structure is semantically similar to an MPI subarray and

is used only to select the kernel implementation.

• StridedBlock

– integer start : byte offset between the lower bound and the first

element

– integer list counts : number of elements in the dimension

– integer list strides : bytes between the start of each element in the

dimension

76

Figure 5.7: Example of stream flattening. When the parent stride allows
repeated children to maintain a fixed stride between their elements, the
parent and child can be flattened into a single stream.

The start field describes the offset of the first byte in the object from the

beginning of the allocation. The ith entry of counts and strides describes the

number of repetitions of the previous dimension and the number of bytes sep-

arating each repetition, respectively. Section 5.2.4 gives a concrete example

of the StridedBlock structure for part of a halo exchange.

Algorithm 5 describes the conversion from Type to StridedBlock. This

is only possible if the bottom is a DenseData and every other object is a

StreamData. The process in Section 5.2.2 will apply the conversion if it is

possible. The DenseData describes the first dimension, which will have stride

1 and count equal to the extent of the DenseData. Each higher dimension

directly corresponds to the StreamData. The offset of each dimension is

accumulated into the single offset of the StridedBlock.

Once the Type is converted into a StridedBlock, the next task is to choose

a method for fast packing and unpacking on the GPU. If the StridedBlock

is 1D (contiguous), we issue a single cudaMemcpyAsync to move the data

into the destination buffer, followed by a cudaStreamSynchronize. This is

similar to the implementation in MVAPICH, OpenMPI, and Spectrum MPI.

If the StridedBlock is 2D we select a kernel that maps the X dimension of

the thread index into the count[0] and the Y dimension to count[1]. If the

77

Algorithm 4: stream flatten from Alg. 1

Function stream flatten(ty):
changed ← FALSE
for child of ty do

changed ← changed ∨ stream flatten(child) . bottom up

end
if ty.data is not StreamData then

return changed
end
Type child = ty.child
if child.data is not StreamData then

return changed
end
StreamData pData ← ty.data
StreamData cData ← child.data
if pData.stride == cData.count × cData.stride then

changed ← TRUE
pData.count ← pData.count × cData.count
pData.stride ← cData.stride
pData.off ← pData.off + cData.off
ty.child ← child.children . delete child

end
return changed

StridedBlock is 3D, we map the X dimension to the count[0], Y dimension

to the count[1], and Z dimension to the count[2]. Higher dimensional objects

can follow the same general pattern, with additional outer loops for each

dimension.

Each kernel dimension is filled from X to Z by the smallest power of two

that encompasses the corresponding extent, ultimately limited by a block

limit of 1024 threads. The grid is then sized to cover the entire input object

once the block size is determined.

Each kernel is specialized to a word size W , which is the largest GPU-

native type that is both aligned to the object and is a factor of count[0]. The

X dimension collaboratively loads count[0] contiguous bytes that make up

each block using elements of size W .

Many MPI functions that operate on datatypes accept a count, incount,

or outcount parameter, describing how many objects are to be operated on

in the buffer. Unlike other properties of the type, this value is not known

until the MPI function is called and therefore is not included in the type

optimization. The kernels handle this value dynamically either by increasing

the grid Z dimension (for 2D), or by applying the entire kernel grid to each

78

Algorithm 5: conversion of Type to StridedBlock

Function strided block(ty):
datas ← []
cur ← ty . Add all TypeData to an array

while true do
datas.append(cur)
if cur.child == {} then

break . no children left

else
cur ← cur.child

end

end
StridedBlock sb . to be returned

for i = 0 to datas.size() do
if i == 0 then

if data is DenseData then
sb.off ← data.off
sb.counts.append(data.extent)
sb.strides.append(1) . DenseData stride is 1

else
return NULL . Not strided

end

else
if data is StreamData then

sb.off ← sb.off + data.off
sb.counts.append(data.count)
sb.strides.append(data.stride)

else
return NULL . Not strided

end

end

end
return sb

object in turn (3D).

By the end of this whole process, each MPI datatype has a corresponding

kernel implementation with a specific W instantiation. No metadata is con-

sumed in GPU memory - all object parameters are either encoded into the

kernel binary (W) or passed as a scalar kernel argument.

5.2.4 Example

Consider a type representing the “interior” data for a send in the -X direction,

for the same 2563 subgrid with stencil radius 3 and 8 byte quantities. This

data is a 3 × 256 × 256 region of a single quantity, offset from the origin

79

by 3 gridpoints each in the X, Y, and Z direction to account for the radius-

3 shell of ghost points. This data would be received into a corresponding

3× 256× 256 ghost region in the +X side of the receiving subgrid. The total

allocation will contain space for 262× 262× 262 gridpoints to accommodate

the ghost points. Figure 5.8 shows the region with various sizes annotated

and Listing 5.1 shows one way to construct the object with MPI datatypes.

Figure 5.8: Example of the interior gridpoint region involved in a -X
direction of a 2563 subgrid halo exchange with an 8 byte quantity. On the
send side, the interior is offset from the origin due to the shell of ghost cells.

Listing 5.1: MPI subarray description of interior gridpoints for -X send

1 MPI_Datatype interior;

2 int ndims {3};

3 int array_of_sizes [3]{262 , 262, 2560};

4 int array_of_subsuzes [3]{256 , 256, 24};

5 int array_of_starts [3]{3 , 3, 24};

6 MPI_Type_create_subarray(ndims , array_of_sizes ,

7 array_of_subsizes ,

8 array_of_starts , MPI_ORDER_C ,

9 MPI_BYTE , &interior);

Figure 5.9 shows an example of what the TEMPI IR for such a non-

contiguous region would look like, directly translated from MPI Type cre-

ate subarray, without any canonicalization. The bottom DenseData (Í)

corresponds to the MPI BYTE type used as the base element for MPI Type -

create subarray. The lowest StreamData (Ì) represents blocks of count = 24

consecutive (stride = 1) child DenseDatas (Í). Since the data is stored in

row-major form, the X dimension is contiguous in memory. These are three

gridpoints along the X direction, each an 8-byte quantity (3× 8 = 24). The

24-byte offset accounts for ghost gridpoints in the X dimension.

80

Figure 5.9: TEMPI IR, after translation and before canonicalization, of the
interior region for the -X direction halo exchange of a 2563 subgrid with an
8 byte quantity.

The Y dimension of the object is represented by the next StreamData

(Ë). This represents the 256 (count = 256) repeated contiguous X blocks

that make up a row of the plane that will be sent. The stride is derived by

recalling that radius of 3 causes the subgrid to be 262 gridpoints in the X

direction (256 interior points + 6 ghost points). For an 8-byte quantity, this

translates to 262 × 8 = 2096 bytes. However, the allocation has a 512 byte

pitch, so the X dimension is padded out to 2560 bytes, the next multiple of

512 (512× 5). Like the X dimension, the Y dimension offset is 3 gridpoints.

This means that the offset is 3 times the size of the X dimension in bytes, or

3× 2560 = 7680 bytes.

The final DenseData (Ê) represents the Z extent (count = 256). The stride

of 670720 matches the amount of linear memory consumed by the Y extent,

which is the pitch of the allocation (previously found to be 2560 bytes) times

the Y extent of the grid (262 points). The offset is 3 gridpoints in the Z

dimension, or 670720× 3 = 2012160 bytes.

Figure 5.10: TEMPI IR, after translation and canonicalization, of the
interior region for the -X direction halo exchange of a 2563 subgrid with an
8 byte quantity. Figure 5.9 shows the original IR.

After transformation, Ì and Í are collapsed into a single consecutive re-

gion (Ð). The transformed IR is shown in Figure 5.10. The transformed IR

can also be used to understand the performance consequences. The bottom

DenseData (Ð) represents the blocks of 24 contiguous bytes. The Stream-

Datas on top of that (Î and Ï) represent 256 × 256 = 65,536 of those

contiguous regions, with either 2560 or 670,720 bytes between them. The

baseline implementation would issue 65,536 24-byte cudaMemcpyAsync calls

81

to pack that non-contiguous data, while TEMPI will issue a single GPU

kernel.

Finally, the corresponding StridedBlock is emitted:

StridedBlock{ start: 2019864,

counts: [24 256 256],

strides: [1 2560 670720] }

The strided block captures the relevant information from the transformed IR:

namely, where the first byte of the object begins relative to the allocation it

is in, and for each dimension, how many elements make up that dimension,

and the stride between each element. Implicitly, the base element for the

first dimension is a byte, i.e., the first dimension is 24 bytes.

5.3 MPI Type commit

The MPI Type commit function delineates the boundary between when an

application constructs a datatype and when that type may be used with

the rest of the MPI functions. The MPI standard advises that “the system

may compile at commit time an internal representation for the datatype

. . . and select the most convenient transfer mechanism.” [30]. In line with

that advice, the translation, canonicalization, and kernel selection phases

occur when the MPI Type commit function is called and are cached for use

when later MPI functions are called. At that time, the provided datatype

is used to look up the corresponding pack/unpack GPU kernel if such an

operation is required. When MPI Type free() is called, the cached kernel

selection is freed.

Figure 5.11 shows the run-time impact of creating MPI derived types,

broken down into two phases. Creation refers to using the MPI Type* and

MPI Type create* functions to assemble the type description. Commit refers

to calling MPI Type commit on that description. TEMPI does the same

operations in each instance; however, it relies on the performance of the

MPI Type get envelope, MPI Type get extent, MPI Type size, and MPI -

Type get contents functions. The different implementations will have differ-

ent performance for those routines, and therefore the “commit” component

takes variable amounts of time. Within a particular implementation, differ-

82

Type (openmpi) Type (mvapich) Type (Summit)

La
te

nc
y

(u
s)

0

2

4

6

8

10

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Construct Commit Commit (TEMPI)

Figure 5.11: Time for MPI derived datatype creation and commit time for
equivalent 3D objects described with subarray (1), hvector of vector (2),
hvector of hvector of vector (2,3), and subarray of vector (4). The “create”
component uses MPI Type* and MPI Type create* family of MPI APIs to
describe the type. The “commit” component is how much time is consumed
in MPI Type commit. The trimean of 30000 executions of each phase is
reported. Construction time is unchanged (TEMPI does nothing) and is
reported for comparison. In MPI Type commit, TEMPI does the same
operations regardless of the MPI implementation, but performance varies
due to performance of the calls that provide information about MPI types.
TEMPI slows commit time substantially, but it still has a negligible impact
on application run time.

ent type configurations have different commit times as a different sequence

of optimizations is run to arrive at the canonical form. Overall, the transfor-

mation and kernel selection process slows down the create+commit process

by 2.1× to 5.5× vs. mvapich, 3.5× to 6.8× vs. openmpi, and 4.2× to 11.6×
vs. Summit. This slowdown is a one-time cost during program startup and

is small in magnitude (a few microseconds).

5.4 MPI Pack and MPI Unpack

MPI Pack takes one or more objects described by a datatype and packs them

into a contiguous buffer on the same rank. As such, it is the simplest MPI

operation to require datatype handling. When MPI Pack is called, the pack

kernel is looked up and invoked on the input and output buffers directly. The

GPU must be synchronized before MPI Pack returns, as the input and output

buffers can be used immediately. Figure 5.12 shows the pack bandwidth

achieved for various 2D objects, described as a vector or subarray datatype.

83

The time elapsed between the call and return of MPI Pack is reported.

Datatype / Size (B) / Count / Contiguous Block Size (B)

M
PI

_P
ac

k
La

te
nc

y
(s

)

1.00E+0
1.00E+1
1.00E+2
1.00E+3
1.00E+4
1.00E+5
1.00E+6
1.00E+7
1.00E+8
1.00E+9

vec / 1 KiB / 1 / 1 vec / 1 KiB / 1 / 8 sub / 1 KiB / 1 / 8 vec / 1 KiB / 1 / 128 vec / 1 KiB / 1 / 256 vec / 1 KiB / 2 / 8 vec / 4 MiB / 2 / 1

Summit TEMPI (Summit) mvapich openmpi TEMPI (openmpi)

Figure 5.12: MPI Pack performance of a variety of 2D objects described as
a vector or subarray datatype. “Size” is the total object size, “count” is the
number of objects packed, and “contiguous block size” is the number of
contiguous bytes in each block of the object. The pitch of each contiguous
block is 512 B. Comparing “vec / 1 KiB / 1 / 8” with “sub / 1 KiB / 1 / 8”
and “sub / 1 KiB / 2 / 8” shows MVAPICH’s accelerated vector handling
does not generalize to equivalent objects or multiple objects. TEMPI
matches MVAPICH’s vector performance, and greatly exceeds the datatype
packing performance for all other implementations.

Spectrum MPI 10.3.1.2, MVAPICH 2.3.4 and OpenMPI 4.0.5 all support a

baseline derived datatype handling approach where each contiguous portion

of the derived datatype is copied into a single contiguous buffer through cu-

daMemcpyAsync (or similar function). The packing throughput is therefore

faster as the contiguous block is larger (amortizing overhead), and slower

when more contiguous blocks comprise the datatype. MVAPICH also fea-

tures optimized handling through specialized packing kernels for certain data-

types. TEMPI achieves a speedup of over 242,000 on Summit for the largest

datatype. TEMPI nearly matches MVAPICH’s performance for the single

vector type (“vec / 1 KiB / 1 / 8”), but generalizes that high performance

to an equivalent subarray (“sub / 1 KiB / 1 / 8”) and multiple vector types

(“vec / 1 KiB / 2 / 8”). Across the experiment speedup varies from 0.98× to

242,000×. Generally TEMPI performs better when the contiguous regions

are smaller or the total data is larger. In the first case, more memory copies

are replaced by a single kernel, and in the second case, the GPU resources

are better utilized by the kernel.

84

5.5 MPI Send, MPI Recv, and Performance Modeling

MPI Send and MPI Recv are the prototypical MPI point-to-point communi-

cation primitives. Like other MPI communication functions, they can oper-

ate on datatypes instead of contiguous data. The interposer design requires

that interprocess communication is handled by the underlying system MPI.

Therefore, integration of datatype handling with underlying communication

is restricted to packing and unpacking non-contiguous data into contiguous

buffers, upon which system MPI primitives are invoked. The datatype ker-

nel selected during MPI Type commit() is executed to covert the object into

MPI PACKED, which is then provided to the system MPI as contiguous

data.

Unlike MPI Pack, the result of the packing operation is not visible to the

caller of MPI Send - it is an intermediate buffer. This means that the location

of that buffer is not specified by MPI or by the application code, and it can

be chosen by the implementation. TEMPI allows two options - a “device”

buffer, where the packed data is resident on the GPU when it is provided to

the CUDA-aware system MPI Send, or a pinned host buffer.

In the “device” packing method (Tdevice, Equation 5.1), the strided object

is packed from the original GPU buffer into an intermediate GPU buffer

(Tgpu−pack), then transferred to an intermediate buffer on the destination

GPU with CUDA-aware MPI Send (Tgpu−gpu), then unpacked into the strided

destination object (Tgpu−unpack).

Tdevice = Tgpu−pack + Tgpu−gpu + Tgpu−unpack (5.1)

In the “one-shot” packing method (Toneshot, Equation 5.2), the strided ob-

ject is packed from the original GPU buffer into intermediate mapped CPU

buffer (Thost−pack), transferred to an intermediate mapped buffer at the des-

tination (Tcpu−cpu), then unpacked directly into GPU memory (Thost−unpack).

Toneshot = Thost−pack + Tcpu−cpu + Thost−unpack (5.2)

Finally, the “staged” method (Tstaged, Equation 5.3) matches the device

method, except the intermediate GPU buffer is transferred to a pinned buffer

on the host (Th2d), where it is transferred to the destination rank’s CPU

before being copied to the destination GPU (Th2d). This method would only

85

be faster than the device method if Tcpu−cpu + Th2d + Td2h < Tgpu−gpu.

Tstaged = Tgpu−pack + Td2h + Tcpu−cpu + Th2d + Tgpu−unpack (5.3)

Figure 5.13 summarizes the three methods.

(a) TEMPI device
method (Tdevice)

(b) TEMPI one-shot
method (Toneshot)

(c) TEMPI staged
method (Tstaged)

Figure 5.13: Diagrams of TEMPI’s device, one-shot, and staged MPI Send
/ MPI Recv methods annotated with quantities from Equations 5.1, 5.2,
and 5.3, respectively.

Wang et al. [59] introduce the one-shot and staged methods (using cu-

daMemcpy2DAsync instead of GPU kernels). They find that the staged

method is preferable to one-shot. In contrast, the other works described in

Chapter 6 prefer the one-shot method with various GPU kernels.

Modeling the performance of each is a challenge in its own right. Inter-

node message latency (Tcpu−cpu) is commonly modeled as a latency term plus

a bandwidth term [64], possibly refined into short, eager, and rendezvous

regimes. Inter-node GPU message latency (Tgpu−gpu) further complicates the

model with GPU-CPU bandwidth, GPU control latency, direct communica-

tion between GPU and NIC (Nvidia’s “GPUDirect”), and pipelining of large

86

messages [65]. When datatypes are involved, there is additional complex-

ity regarding efficiency of non-contiguous memory accesses served through

device memory (Tgpu−pack) or over the CPU-GPU interconnect (Tcpu−pack).

The interposer design places TEMPI at the mercy of the performance char-

acteristics of the underlying system, so this work sidesteps these concerns by

measuring the relevant performance directly and using them at run-time to

choose the packing method.

To determine which method offers the best performance in practice, the

quantities can be measured for a variety of object kinds and sizes.

• Tcpu−cpu: MPI Send/MPI Recv on CPU buffer

• Tgpu−gpu: MPI Send/MPI Recv on GPU buffer

• Td2h: cudaMemcpyAsync from device (GPU) to host (CPU) and cud-

aStreamSynchronize

• Th2d: cudaMemcpyAsync from host to device and cudaStreamSynchro-

nize

The MPI operations are measured through a ping-pong between two ranks,

and the reported time is half of the total ping-pong time. The two ranks

are on separate nodes. The CUDA operations are recorded using wall-time

around the first and last calls, which reflect when control leaves and returns

to the application.

Figure 5.14a shows the results of the four operations for various data sizes.

CUDA-aware MPI transfers show a latency floor of approximately 6 µs, com-

pared to 1.3 µs transfers from pinned system memory.

Figure 5.14b shows the measurements in Equations 5.1, 5.2, and 5.3 while

holding Tgpu−pack/unpack and Tcpu−pack/unpack to zero (i.e., Toneshot = Tcpu−cpu

and Tdevice = Tgpu−gpu). There is no region where Tstaged is faster than Tdevice

and it will be disregarded in further discussion. Whether Tdevice or Toneshot

is faster will depend on the relative pack/unpack performance of the two

methods. As Tdevice has pack/unpack occur in the faster device memory, it

may be faster than Toneshot for various transfer sizes.

To complete the model, Figure 5.15 shows the measured latency of pack

and unpack operations for one-shot (Tcpu−pack, Tcpu−unpack) and device

87

log2 Data Size (B)

La
te

nc
y

(u
s)

1

10

100

1000

0 5 10 15 20

Td2h Th2d Tcpu-cpu Tgpu-gpu

(a) Measurements of Td2h, Th2d, Tcpu−cpu, and Tgpu−gpu on Summit.

log2 Data Size (B)

La
te

nc
y

(u
s)

1

10

100

1000

0 5 10 15 20

Tdevice Tstaged Toneshot

(b) Partial values of Tdevice, Toneshot, and Tstaged, (excluding pack time), using
the values from (a). Tstaged is never lower than the other methods, and is
excluded from further discussion.

Figure 5.14: Raw measurements and partial performance models (omit
pack/unpack) for various data transfer methods on OLCF Summit.

(Tgpu−pack, Tgpu−unpack). The recorded time includes all of the operations de-

scribed in Section 5.2.3, i.e. selecting appropriate grid dimensions, executing

the kernel, and synchronizing after execution.

Pack/unpack latency depends on both the object size and the size of the

contiguous blocks in the object. Larger objects are faster as GPU resources

are more fully utilized. Larger contiguous blocks tend to be faster as accesses

become more coalesced and make better use of memory and interconnect

transactions. One-shot performance is maximized at 32 B contiguous blocks

and in-device performance at 128 B. The unpack operation is slower than

the pack due to non-contiguous writes (instead of non-contiguous reads in

the pack operation).

Therefore, whether Toneshot or Tdevice is faster depends on both the ob-

88

Contiguous Block Size (B)

Pa
ck

 L
at

en
cy

 (u
s)

10

50

100

500

1000

1 5 10 50 100

(a) One-shot pack.

Contiguous Block Size (B)

1

5

1

5

1

1 5 10 50 100

64 B

64 KiB

256 KiB

1 MiB

4 MiB

(b) One-shot unpack.

Contiguous Block Size (B)

Pa
ck

 L
at

en
cy

 (u
s)

10

50

100

500

1000

1 5 10 50 100

(c) Device pack.

Contiguous Block Size (B)

1

5

1

5

1

1 5 10 50 100

64 B

64 KiB

256 KiB

1 MiB

4 MiB

(d) Device unpack.

Figure 5.15: Pack/unpack latency using the one-shot and device strategies
for 64 B - 4 MiB objects. For smaller contiguous regions, performance is
reduced due to low memory or interconnect efficiency for non-coalesced
accesses. For larger objects, performance increases as GPU resources are
better utilized.

ject size and the length of the contiguous blocks that make up that object.

Qualitatively, the one-shot method is faster when objects are smaller, as the

packing kernels are limited by launch and synchronization overhead and the

CPU-CPU transfers are faster than GPU-GPU. It is also faster when objects

are more contiguous, where the zero-copy accesses over the interconnect make

good use of the interconnect bandwidth.

When MPI Send is called, TEMPI uses the object size and parameters

to query the performance model. TEMPI provides a binary that records

system performance parameters to the file system. This binary should be run

once before TEMPI is used in an application. Performance measurements

are sparse by necessity. Tcpu−cpu and Tgpu−gpu are estimated through 1D

interpolation of the object size, while Tcpu−pack, Tcpu−unpack, Tgpu−pack, and

Tgpu−unpack are estimated through a 2D interpolation of the stride and block

length of the datatype. These modeling functions are “pure”, and their

89

results are cached so that future invocations using the same parameters do

not require a redundant expensive interpolation.

In each iteration of the Isend/Irecv implementation of the Astaroth com-

munication pattern at 512 nodes with 6 ranks per node, 480 messages are

sent using the one-shot method, and 144 using the device method. Gener-

ally, smaller messages use the one-shot method, and larger methods use the

device method, according to the performance model.

Figure 5.16 shows the application-visible performance of MPI Send/MPI -

Recv compared to the baseline Spectrum MPI 10.3.1.2. Figure 5.16a shows

that the vast majority of the speedup comes from the datatype handling

(“baseline” vs. one-shot/device). Since Toneshot or Tdevice may be faster de-

pending on the arguments passed to MPI Send, TEMPI uses the performance

model and system measurements to estimate which method will have lower

latency. Figure 5.16b shows that the automatic model-based selection is ac-

curate enough to reliably choose the faster of the one-shot or device methods.

In the 1 KiB object some small model slowdown is observed as TEMPI must

dynamically query the performance model to make its method selection.

1 KiB Object 1 MiB Object 4 MiB Object

La
te

nc
y

(u
s)

1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

one-shot

device

auto

baseline

(a) MPI Send / MPI Recv latency for the one-shot, device, model-based
automatic selection, and Summit MPI baseline. The vast majority of the
performance improvement comes from the datatype handling, before the one-shot
or device method is selected.

1 KiB Object 1 MiB Object 4 MiB Object

N
or

m
al

iz
ed

 L
at

en
cy

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

one-shot

device

auto

(b) Normalized latency of the one-shot, device, and model-based selection based
on the measured system parameters. The model-based automatic selection
reliably chooses the faster method with minimal overhead.

Figure 5.16: Time for an MPI Send/MPI Recv pair for 1KiB, 1MiB, and
4MiB 2D objects with contiguous blocks of various sizes. “Baseline” is the
Summit platform without TEMPI. Each group of bars is labeled with the
contiguous block size.

90

This slowdown is present at all sizes, but not as visible at the larger ob-

ject sizes. Over these tests, model selection added 277 ns of latency. The

latency floor is around 30 µs, of which 26 µs can be directly attributed to

the pack/unpack kernels on the sending and receiving side. The rest of the

time is consumed by looking up the cached datatype handler and checking

to see if the user-provided buffers are GPU-resident. Speedup between the

baseline and TEMPI’s automatic selection is up to 59000× for large objects

with small blocks.

5.6 MPI Isend/Irecv

MPI Isend and MPI Irecv are asynchronous versions of MPI Send and MPI -

Recv. They should return as quickly as possible to allow the application

to overlap as many communications as possible. Consider the structure of

MPI Isend. An asynchronous packing kernel can be invoked immediately

and control can return to the application. Then at some indeterminate future

time, that kernel will finish and the underlying MPI communication operation

should begin.

TEMPI is designed to work on systems with MPI THREAD SINGLE, so

only one thread may make MPI calls. Since the application expects to make

MPI calls, that thread must be an application thread. This prevents TEMPI

from assigning the sequential CUDA and MPI operations to another thread

that can run concurrently with the application thread.

The selected implementation introduces an object which manages all ac-

tive asynchronous operations. When MPI Isend or MPI Irecv is called, an

active operation is recorded inside the management object. Internally, this

operation may contain handles to its component asynchronous operations

(e.g. a cudaEvent marking completion of a CUDA kernel, or an MPI Re-

quest referring to an MPI operation). Consistent with the MPI interface,

TEMPI provides a fake MPI Request object back to the application. Future

MPI Wait* functions called on these fake MPI Requests are routed through

the manager for handling instead of to the underling MPI implementation.

Whenever control enters TEMPI (at the interface of any overloaded MPI

call), TEMPI will attempt to make progress on any active asynchronous

operations. This involves querying the state of all active operations, and

91

initiating the next component of any ready operation.

(a) MPI Isend (b) MPI Irecv

Figure 5.17: Diagrams of TEMPI’s MPI Isend and MPI Irecv interaction
with CUDA and MPI, and how control enters and leaves. Upon the
application call, TEMPI starts the operation and returns as quickly as
possible. TEMPI allows each operation to progress opportunistically as
control re-enters the TEMPI library. TEMPI tracks the state of the
operations until MPI Wait is called.

More concretely, Figure 5.17a summarizes TEMPI’s MPI Isend implemen-

tation. When MPI Isend is called, the packing operation selected using the

procedure in Section 5.2 is issued and the Isend record is put into the CUDA

state. A cudaEvent is used to record the state of the stream when the pack-

ing operation is completed. Finally, an MPI Request object is created using

MPI Send init. This request is stored internally, and a separate placeholder

request is delivered to the application when control returns.

When control later re-enters TEMPI again (e.g. when the application

makes an MPI call), TEMPI checks if the pack operation is complete. If not,

TEMPI will proceed with the requested function immediately. If so, TEMPI

will start the MPI operation and put the Isend record in the MPI state.

This is an example of “opportunistic progress:” when execution control enter

TEMPI, TEMPI attempts to progress the state of all in-flight asynchronous

operations. Now that the Isend record is in the MPI state, opportunistic

92

progress involves checking the MPI operation for completeness with MPI -

Test. When complete, this will NULL the internal MPI Request (which

is why a placeholder was provided to the application). Later, when the

application calls MPI Wait on the placeholder, it can be reconciled with the

completed Isend record. Figure 5.17b shows a similar, reversed sequence for

MPI Irecv.

5.7 Graph Partitioning for Data Placement

Section 5.1.1 described how MPI Dist graph create adjacent function can be

used to create a reordered topology where heavily communicating ranks are

placed on the same node. TEMPI implements this functionality by using a

modified version of the process mapping interface from the KaHIP [66, 67]

graph partitioning library. KaHIP provides the process mapping function,

but that function does not guarantee that the partitions will be of equal

size. TEMPI uses a slight modification that does enforce that restriction.

For a system with N nodes and P ranks per node, TEMPI will request

that KaHIP partition the edge-weight graph into N partitions of P vertices.

TEMPI will then arbitrarily assign processes within each group of P to ranks

in the old communicator. Distinct from the stencil library, TEMPI does not

attempt to place ranks according to the intra-node bandwidth. Section 4.6.2

demonstrated that this has a minimal effect on the performance for the stencil

code.

The MPI specification allows the implementation to ignore the reorder re-

quest. All MPI platforms tested do not implement the reorder. TEMPI calls

the system MPI MPI Dist graph create adjacent to create the new communi-

cator, but since that communicator has the same ranks as the parent, TEMPI

maintains an internal mapping between those ranks and the reordered rank

presented to the application. Any MPI operation that uses that commu-

nicator has its ranks relabeled by TEMPI before being passed on to the

non-reordered system MPI implementation.

Figure 5.18 shows the effect of the data placement strategy on the As-

taroth communication time. Like in the stencil library, placement has the

largest effect at six ranks per node, since that provides the most opportu-

nities to move communication from off-node to on-node. Unlike the stencil

93

Nodes / Ranks per Node

M
PI

_N
ei

gh
bo

r_
al

lto
al

lv
 T

im
e

(s
)

0.00

0.05

0.10

0.15

0.20

1/
1

1/
2

1/
6

2/
1

2/
2

2/
6

4/
1

4/
2

4/
6

8/
1

8/
2

8/
6

16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/

1
12

8/
2

12
8/

6
25

6/
1

25
6/

2
25

6/
6

51
2/

1
51

2/
2

51
2/

6

Default Placement TEMPI Placement

Figure 5.18: MPI Neighbor alltoallv time consumed in each Astaroth
iteration with default MPI placement or TEMPI automatic placement.
Placement only has a substantial effect when six ranks are used on each
node, as it offers the most opportunity to reduce off-node communication.

library, TEMPI uses MPI for communication regardless of the location of the

two ranks. This further confirms that the benefits from optimized on-node

communication (i.e., avoiding the system MPI) are limited compared to the

benefits of moving communication on-node. At 512 nodes with 6 ranks per

node, placement yields a 1.25× speedup.

Nodes / Ranks per Node

Lo
g1

0
H

al
o

Ex
ch

an
ge

s

0

1

2

3

4

5

6

1/
1

1/
2

1/
6

2/
1

2/
2

2/
6

4/
1

4/
2

4/
6

8/
1

8/
2

8/
6

16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/

1
12

8/
2

12
8/

6
25

6/
1

25
6/

2
25

6/
6

51
2/

1
51

2/
2

51
2/

6

Figure 5.19: Number of Astaroth halo exchanges needed to recoup initial
data placement cost. Values above 6 are clipped for display purposes.

Figure 5.19 shows the cost in iterations to recoup the initial placement

cost. First, no effort was made to optimize the performance of the placement

algorithm. This is a challenging problem in its own right, and the balance

between placement time and improvement of application performance is one

that is ripe for future work. Recall that the main effect of placement is to

convert inter-node communication to intra-node communication. Configu-

94

rations with one rank per node (*/1 configurations) will never recoup any

placement cost, as there is no way to convert off-node to on-node communi-

cation. Figure 5.19 shows these as an infinite cost, as any runtime overhead,

even an infinitesimal one that disables placement when there is only one rank

per node, can never be recovered through improvement. Following the same

line of reasoning, the two rank-per-node cost (*/2 configurations) is higher

than the 6 rank-per-node cost (*/6 configurations). This is because there

is less benefit from placement when only two ranks can be on each node –

there is less opportunity to turn off-node communication into on-node com-

munication. This outweighs the reduced placement cost due to the smaller

number of nodes.

Generally, as the number of ranks grows, so does the placement cost. The

placement algorithm is executed serially on the root node and results are

distributed to all nodes. The cost of the serial placement algorithm grows

faster than the improved performance that results. Furthermore, there is a

cap on the improvement from placement, as stencil communication is local.

Therefore, after each rank has 26 unique neighbors, no further improvement

from placement can be achieved (Figure 4.12). Finally, as more nodes are in-

volved, the share of the time devoted to off-node communication grows, even

when the off-node communication amount does not increase on a per-node

basis. This is due to increased contention in the network and greater dis-

tances for the data to travel. All of this contributes to a generally increasing

number of iterations to recover the placement time.

5.8 Interposer Library

Despite broad GPU deployment in distributed computing and substantial

work in datatype handling (Chapter 6), high-performance handling of GPU

datatypes remains a rare feature. The methods of Wei et al. [61] were imple-

mented as a non-public OpenMPI fork that was never merged. MVAPICH-

GDR features some fast handling of GPU datatypes [56, 57], but requires [34]

the unrelated Mellanox OpenFabrics Enterprise Distribution, which is tied to

specific network hardware not present on all systems. Therefore the challenge

of deployment seems to be a fundamental one. Consequently, one contribu-

tion of this work is to demonstrate that an interposed library can transpar-

95

ently deliver large derived-datatype performance improvements without ap-

plication modification. The Topology Experiments for MPI (TEMPI) library

implements this work and has been tested with OpenMPI 4.0.5, MVAPICH

2.3.4, and Spectrum MPI 10.3.1.2.

5.8.1 Interposer Architecture

Figure 5.20: The application source file (Ê) includes the MPI header file
provided by the system (Ì). It is compiled (Ë) and linked with the system
MPI implementation. When the binary (Í) is executed, symbols are
resolved and the MPI code from the system MPI library is executed. The
TEMPI source files (Ï) are compiled (Ð) into a dynamic library (Ñ) using
the system MPI header. The application is compiled as normal except for
TEMPI being inserted into the link order (Ë), or an unmodified application
can be used with the LD PRELOAD mechanism. When the application is
executed, any symbols defined by the TEMPI library will be resolved there
(Ñ), allowing the TEMPI code to be executed. Any others will be resolved
in the system implementation.

The Topology Experiments for MPI library is designed to make MPI mod-

ifications available to research and production code without relying on up-

dates to the system MPI implementation. For reference, Figure 5.20 shows

a compiled MPI application (Ê-Î) and the TEMPI interposer (Ï-Ñ). The

application source (Ê) includes the system MPI headers (Í) and is com-

96

piled (Ë) to produce a binary (Ì). At run time, the operating system will

resolve the symbols in the application binary according to the order of linked

libraries, and MPI Init is found in the system MPI implementation (Î).

TEMPI provides new MPI functionality for unmodified applications by ex-

porting a partial implementation for the MPI interface. For example, init.cpp

(Ï) implements the MPI Init function. The TEMPI source includes the sys-

tem MPI header, and must be compiled (Ð) with the same MPI as the target

application so that the ABI matches. If the original application can be re-

compiled, the TEMPI library (Ñ) may be inserted into the link order before

the system MPI library (Ë). If not, the TEMPI library can be injected using

LD PRELOAD or similar mechanism (not shown).

Either way, the operating system will search for the MPI Init symbol in

the TEMPI library. As it is found there, that function will be called instead

of the system MPI. Internally, TEMPI may ultimately call some system MPI

function after introducing its own functionality. This is achieved through the

dlsym function. Any parts of the MPI interface that TEMPI does not cover

will fall back to the system MPI library automatically.

MPI provides a similar facility, the MPI Profiling Interface. The MPI

standard suggests that the “real” MPI should be implemented in the PMPI -

* family of functions, and the standard MPI * interface is just a wrapper

around them. Like with TEMPI, someone wanting to implement a profiler

could then re-link with a program that implements the PMPI * family. Un-

link PMPI *, TEMPI is designed to be chained with additional downstream

PMPI overloads.

5.8.2 Temporary Buffers

The device and one-shot communication methods pack non-contiguous ap-

plication data into intermediate buffers on which TEMPI calls system MPI

operations. In some cases, those buffers involve pinned host memory, which

is slow to allocate on-demand as the system must eagerly back the virtual

pages with physical ones from the system memory. Device allocations are

also slow since they must interact with the accelerator.

TEMPI uses pool allocators for objects of various sizes. A separate pool

of allocations is maintained for each size 2N bytes. When an intermediate

97

buffer of size M is requested, TEMPI checks pool i where 2i+1 > M >= 2i.

If all allocations in the pool are used, or the pool is empty, TEMPI makes

the corresponding cudaMalloc or new/cudaHostRegister call to get a device

or pinned host allocation. When the operation that required the allocation

is complete, the allocation is released to the pool, but not deallocated. In

this manner, the first time an application reaches its maximal intermediate

buffer footprint, allocations will be slow, but after that time allocations will

not interact with the OS or CUDA driver and will be served very quickly.

Table 5.2: Intermediate allocator statistics

Allocator Host Device
Alloc/Dealloc 336 80

Req/Rels 100800 24000
Max Usage (MiB) 38.03125 160

Table 5.2 summarizes the allocator statistics for 100 iterations of the

Isend/Irecv Astaroth communication pattern using 512 nodes with 6 ranks

per node. As the performance model splits the communications across the

device and one-shot method, the host and device allocators are both used.

Since the stencil communication has repeated communications over each it-

eration, only in the first iteration do requests result in using the CUDA or

operating system allocators. When those allocations are released, TEMPI

does not deallocate them, and uses them to serve future requests. In this

manner, each allocation is made to serve 300 separate requests (100 iterations

times three halo exchanges per iteration). The trade-off is that each rank

consumes an additional 160 MiB of GPU memory and 38 MiB of pinned host

memory for the duration of the execution.

5.8.3 Performance Model Cache

Querying the system performance model on each communication can add

substantial latency. To determine whether the one-shot or device method is

better, the performance model must be evaluated for each method. Since

not every possible object contiguous block size or total packed data size is

measured, looking up each quantity involves a 1D or 2D interpolation. To

evaluate both models, two 1D interpolations (Tcpu−cpu, Tgpu−gpu: independent

variable is total data size) and four 2D interpolations (Tcpu−pack, Tcpu−unpack,

98

Tgpu−pack, Tgpu−unpack: independent variables are total data size and con-

tiguous block size) are required. During a given execution the performance

model is static, and therefore the modeling function can be considered to be

pure. Once the performance models are evaluated, the choice of device or

one-shot method can cached for the next identical invocation. TEMPI uses

a C++ std::unordered map (a hash map) keyed on a tuple of 〈contiguous

block size, object size, colocated〉 (the last element referring to whether the

sending/receiving pair are colocated). The value of the map is whether to

use the one-shot or device method. In an iterative application, each iteration

may repeatedly send the same quantity of data, and the cache will prevent

repeated expensive model queries.

Each unique key tuple will result in a new entry in this cache. Figure 5.21

measures the time it takes to retrieve the cache entry based on the cache

size. The hash map provides a constant 5 ns cost on the Summit machine, a

negligible addition to the microsecond latency of small messages.

Cache Entries

Lo
ok

up
 L

at
en

cy
 (n

s)

1

5

50

500

1.00E+0 1.00E+1 1.00E+2 1.00E+3 1.00E+4 1.00E+5 1.00E+6 1.00E+7

std::unordered_map std::map

Figure 5.21: Time to retrieve the one-shot vs. device MPI Send method
from the cache, based on the number of unique cache entries. The C++
std::unordered map (a hash map, amortized constant-time lookup) provides
a constant 5 ns latency, while std::map (a binary tree, amortized log-time
lookup) becomes more expensive as the cache grows.

For 100 iterations of the Isend/Irecv implementation of the Astaroth com-

munication pattern at 512 nodes with 6 ranks per node, the cache is queried

124,800 times and 5 of those queries are misses, which require an actual eval-

uation of the performance model. For the stencil case, the number of distinct

datatypes is small, however, std::unordered map should provide equivalent

performance regardless of the number of datatypes used in other applications.

99

5.8.4 IID Testing

TEMPI provides a system measurement binary which determines the con-

stant values for Tcpu−cpu and Tgpu−gpu (inter- and intra-node) and the pack-

/unpack times (Tcpu−pack, Tcpu−unpack, Tgpu−pack, Tgpu−unpack). Tcpu−cpu and

Tgpu−gpu and measured for 2i for 0 < i < 23 bytes, covering both the latency-

and bandwidth-bound regimes. The pack/unpack quantities are measured

on a 2D sweep of object sizes and contiguous block sizes, with a fixed pitch

of 512 bytes. Object size is 22i+6 for 0 <= i < 9 (64 bytes to 4 MiB). Block

size is 2i for 0 <= i < 9.

Each benchmark is divided into trials and samples. Each sample measures

enough operations to consume at least 200 µs, and represents the mean time

measures. At least 7 samples are taken for each trial, and no more than 1 s

of time or 500 samples are taken.

Each trial is evaluated using the SP 800-90B [68] statistical tests for ran-

domness. In a true performance measurement, it is expected that each sample

will be drawn from the same independent and identically distributed pop-

ulation. If the trial fails, another is repeated, up to 10 trials. If a trial

succeeds, the measurement is reported. This strategy for attempting IID

measurements is presented for completeness, without evaluation.

5.9 3D Stencil Evaluation

Section 5.1 described how the Astaroth communication pattern was imple-

mented in MPI. Section 5.7 described how placement yielded a 1.25× re-

duction in halo exchange latency at scale. This section examines in more

detail the components that contribute to the overall halo exchange time once

placement is applied.

The enormous datatype handling improvement is the primary driver of

performance. For reference, Figure 5.22 shows the breakdown of MPI Pack,

MPI Neighbor alltoallv, and MPI Unpack operations for the “alltoallv” halo

exchange. Evenly split and consuming effectively all of the time are the

MPI Pack and MPI Unpack operations. Each phase is timed separately,

with MPI Barrier inserted between them. The longest time consumed by

any rank is reported. The average of three runs is reported.

Figure 5.23 shows the same test case when TEMPI’s transparent datatype

100

Nodes / Ranks per Node

H
al

o
Ex

ch
an

ge
 T

im
e

(s
)

0

50

100

150

1/
1

1/
2

1/
6

2/
1

2/
2

2/
6

4/
1

4/
2

4/
6

8/
1

8/
2

8/
6

16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/

1
12

8/
2

12
8/

6
25

6/
1

25
6/

2
25

6/
6

51
2/

1
51

2/
2

51
2/

6

MPI_Unpack MPI_Neighbor_alltoallv MPI_Pack

Figure 5.22: Breakdown of MPI Pack, MPI Unpack, and
MPI Neighbor alltoallv time for the Astaroth halo exchange using the
baseline Spectrum MPI implementation. The exchange time is dominated
by the pack and unpack time, and the alltoallv time is not visible in the
chart.

handling is enabled. Though Section 5.4 shows MPI Pack speedups as large

as 242,000×, speedup in the 512/6 configuration is ≈ 970. First, many pack

operations will exhibit smaller individual speedup, as the different bound-

ary regions may be more or less contiguous in memory. Second, the time

consumed by the alltoallv establishes a maximum speedup of 1147× (if non-

contiguous type handling was “free”). Figure 5.24 summarizes the “alltoallv”

halo exchange speedup achieved using TEMPI for various MPI configurations

for running Astaroth.

Figure 5.25 shows the contribution of various sub-components to the over-

all halo exchange time for the Isend/Irecv halo exchange implementation.

Each component represents the amount of wall time spent by rank 0 in that

operation (while the total is the exchange time observed by all ranks).

First, this implementation is slower at all configurations (1.68× at 1/1,

1, 45× at 512/6). cudaEventSync, cudaEventQuery, and cudaEventRecord

are necessary for tracking completion of asynchronous operations and are not

present in the alltoallv method. As such, they can be interpreted as overhead

from this implementation choice, but together, they do not contribute enough

time to create the overall slowdown except for the smallest of cases.

Second, at scale, the vast majority (86%) of the time is elapsed outside of

the TEMPI library. This is not precisely true, as the TEMPI library adds

some additional overhead to orchestrate the measured components. However,

this does suggest that the performance of the system communication itself is

101

Nodes / Ranks per Node

H
al

o
Ex

ch
an

ge
 T

im
e

(s
)

0.00

0.05

0.10

0.15

1/
1

1/
2

1/
6

2/
1

2/
2

2/
6

4/
1

4/
2

4/
6

8/
1

8/
2

8/
6

16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/

1
12

8/
2

12
8/

6
25

6/
1

25
6/

2
25

6/
6

51
2/

1
51

2/
2

51
2/

6

MPI_Unpack MPI_Neighbor_alltoallv MPI_Pack

Figure 5.23: Breakdown of MPI Pack, MPI Unpack, and
MPI Neighbor alltoallv in the MPI Astaroth halo exchange using TEMPI
(including TEMPI placement). For small numbers of nodes, pack/unpack
time dominates, whereas packed data exchange is dominant for larger
number of nodes. The Astaroth halo exchange time is measured without
concurrent computation kernels, i.e., no contention for GPU execution
resources with TEMPI packing/unpacking kernels.

to blame.

5.10 Conclusion

This chapter examined techniques for improving the performance of certain

stencil-related MPI operations on the GPU. Chapter 3 introduced how the

actual performance of CUDA communication primitives can vary consider-

ably from their theoretical maximums. Chapter 4 followed by describing

how to design a stencil halo exchange strategy which minimizes communica-

tion, minimizes latency, maximizes overlap, and maximizes bandwidth. This

chapter built on both by examining how those lessons could be integrated

directly into existing MPI implementations.

Minimizing communication was examined through MPI Dist graph cre-

ate adjacent. This MPI function creates a new communicator with attached

topology information, associating ranks and their neighbors for future col-

lective operations. This routine also allows ranks to be reordered, or re-

numbered so that communicating ranks are placed on the same node. For a

large distributed 3D stencil, this was found to improve halo exchange latency

by 1.25×.

102

Nodes / Ranks per Node

H
al

o
Ex

ch
an

ge
 S

pe
ed

up

0

1000

2000

3000

4000

5000

1/
1

1/
2

1/
6

2/
1

2/
2

2/
6

4/
1

4/
2

4/
6

8/
1

8/
2

8/
6

16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/

1
12

8/
2

12
8/

6
25

6/
1

25
6/

2
25

6/
6

51
2/

1
51

2/
2

51
2/

6

Figure 5.24: Speedup of the alltoallv halo exchange using TEMPI (Figure
5.23) vs. Spectrum MPI (Figure 5.22). Speedup is lower for larger number
of ranks as datatype handling is a smaller portion of the total time. At 512
nodes and 6 ranks per node, speedup is 971

Maximizing bandwidth proved to be a core contribution. The baseline

MPI primitives did not effectively handle non-contiguous data. A novel MPI

derived datatype scheme for GPUs was introduced, with benefits of general-

ity and minimal metadata size while maintaining performance. This scheme

reduced baseline MPI Pack latency by up to 242,000×. Similarly large im-

provements were observed in MPI Send.

Overlap between data-packing and communication in the halo exchange

pattern was investigated through an implementation using MPI Isend and

MPI Irecv instead of MPI Alltoallv. Performance in the point-to-point im-

plementation was observed to be ≈ 1.5× slower than the collective-based im-

plementation. Performance instrumentation in TEMPI ascribed the deficit to

MPI primitives themselves, suggesting that previously observed concurrency

issues in the Spectrum MPI implementation during unstructured communica-

tion are to blame. While TEMPI can be used to bring dramatic performance

improvements in some ways, it ultimately still relies on the underlying im-

plementation for inter-process communication. Flawed implementations can

inhibit a more thorough understanding of all aspects of the performance.

All of these investigations were carried out through TEMPI, an interposer

library that transparently modifies existing MPI applications without requir-

ing a recompilation. TEMPI is publicly available (see Appendix).

103

Nodes / Ranks per Node

H
al

o
Ex

ch
an

ge
 T

im
e

(s
)

0.00

0.05

0.10

0.15

0.20

0.25

1/
1

1/
2

1/
6

2/
1

2/
2

2/
6

4/
1

4/
2

4/
6

8/
1

8/
2

8/
6

16
/1

16
/2

16
/6

32
/1

32
/2

32
/6

64
/1

64
/2

64
/6

12
8/

1
12

8/
2

12
8/

6
25

6/
1

25
6/

2
25

6/
6

51
2/

1
51

2/
2

51
2/

6

Other cudaEventSync cudaEventQuery cudaEventRecord
Pack/Unpack Kernel Launch MPI_Irecv MPI_Send_start

Figure 5.25: Breakdown of Isend/Irecv-based Astaroth halo exchange
implementation. Since each rank does a fixed amount of communication,
the contribution of various runtime components is relatively constant. Only
“other”, which includes actual communication time, increases as more
ranks are included.

104

Chapter 6

Related Work

6.1 CUDA Communication Benchmarks

Table 6.1 shows how prior works have overlapped with the microbench-

marks in Comm|Scope. Though some of the specific measurements made by

Comm|Scope have been made previously, we believe Comm|Scope represents

the most comprehensive coverage of CPU-CPU and CPU-GPU point-to-point

communication performance to date.

Li et al. [71, 75] created Tartan, a benchmark suite for evaluating GPU

interconnects in the context of machine-learning workloads. Tartan includes

microbenchmarks for point-to-point and collective GPU-GPU communica-

tion within and across nodes. To that end, Tartan measures bandwidth,

latency, and efficiency of GPU-GPU explicit memory copies and the Nvidia

Collective Communications Library (NCCL) on PCIe, NVLink 1.0, NVLink

2.0, and Infiniband systems with GPUDirect RDMA. Unlike Tartan, Comm|-
Scope includes CPU/GPU transfers, but only measures point-to-point trans-

fer bandwidth within a single node. Tartan also includes 14 larger application

benchmarks. Those benchmarks are categorized by what communication pat-

tern they exhibit. Some of those benchmarks are categorized into the CPU-

GPU communication pattern, but Tartan does not include corresponding

CPU-GPU microbenchmarks.

Tallent et al. [69] evaluate the effect of multi-GPU systems on deep-

learning workloads. Along the way, they measure point-to-point explicit

GPU-GPU copy bandwidth with and without peer access available, which

are two of the microbenchmarks included in Comm|Scope. They also have

some GPU/GPU latency and collective communication bandwidth measure-

ments, similar to Tartan.

Ben-nun et al. [76, 70] present Groute and MGBench. Groute is a multi-

105

Table 6.1: Comm|Scope data transfer microbenchmark coverage, and
summary of where related work overlaps. Comm|Scope defines bandwidth
benchmarks for all unidirectional and bidirectional primitive CUDA
point-to-point transfers.

Host Allocation Device Allocation Transfer Kind Our [69] [70] [71] [36] [72] [73] [74]

NUMA / pageable cudaMalloc explicit
H2D X
D2H X

bi X

pageable cudaMalloc explicit
H2D X X X X
D2H X X X

bi X

NUMA / pinned cudaMalloc explicit
H2D X X
D2H X X

bi X

pinned cudaMalloc explicit
H2D X X X X X
D2H X X X X

bi X X

mapped – implicit (zero-copy) H2D X X

– cudaMalloc implicit (zero-copy)
D2D X X

D/D bi X X

– cudaMalloc explicit / peer
D2D X X X X X

bi X X X X

– cudaMalloc explicit / no peer
D2D X X X X

bi X X

cudaMallocManaged demand page migration

H2D X X
D2H X X

H/D bi X
D2D X

D/D bi X

cudaMallocManaged prefetch

H2D X X
D2H X

H/D bi X
D2D X

D/D bi X

pinned cudaMalloc cudaMemcpy2DAsync
D2H X
H2D X

– cudaMalloc cudaMemcpy2DAsync D2D X

pinned cudaMalloc cudaMemcpy3DAsync
D2H X
H2D X

– cudaMalloc cudaMemcpy3DPeerAsync D2D X

pinned cudaMalloc custom kernel
H2D X
D2H X

– cudaMalloc custom kernel
D2D (pull) X
D2D (push) X

106

GPU programming model, and MGBench was developed partially to under-

stand multi-GPU communication patterns before developing Groute. MG-

Bench includes some host/GPU and GPU/GPU zero-copy benchmarks for

coalesced and random accesses. MGBench includes device synchronization

time in their bandwidth measurements.

The SHOC benchmark suite [36] is meant to measure the performance

of heterogeneous systems running OpenCL and CUDA workloads. SHOC

includes unidirectional bandwidth measurements of point-to-point transfers

between CPU and GPU.

Landaverde, Zhang, Coskun, and Herbordt [72] investigate the effect of

porting several benchmarks to use CUDA’s unified memory system on PCIe

systems. They present microbenchmarks that correspond to the unidirec-

tional host/device coherence measurements in Comm|Scope. They also have

the corresponding implementation using explicit point-to-point copies. They

do not account for NUMA topology in their measurements and only consider

PCIe systems.

Spafford, Meredith, and Vetter [77] measure NUMA and contention in

multi-GPU systems. They overlap with Comm|Scope by measuring point-

to-point NUMA-aware CPU/GPU bandwidth on PCIe systems. Though

they do not specify, the results suggest that they are measuring bandwidth

from pinned host allocations.

Though the CUDA SDK Samples [73] are not intended as a performance

measurement tool, they provide demonstration code that measures host/de-

vice bandwidth for pageable and pinned allocations and bandwidth and la-

tency of unidirectional and bidirectional GPU/GPU transfers with and with-

out peer access enabled. None of these samples consider NUMA effects,

and there are no comparable unified memory performance measurement pro-

grams.

Mukherjee et al. [78] describes a microbenchmark that measures data

transfer performance in the HSA 1.0 unified memory system and the OpenCL

2.0 shared virtual memory. This work includes similar demand migration

bandwidth measurements in CUDA.

Roberts, Ramanna, and Walthour [79] investigate data movement on the

AC922 platform, the same that is used on Summit. It measures RDMA band-

width for a variety of transfer sizes inter-node, whereas this work considers

intra-node.

107

Gu et al. [80] reimplement benchmarks from other benchmark suites us-

ing unified memory, but do not include any data transfer microbenchmarks.

Chien, Peng, and Markidis [81] do something similar, with an emphasis on

advanced managed memory features. Comm|Scope examines prefetching as

one of the point-to-point bulk modalities.

Li et al. [82], published concurrently with Comm|Scope, measures la-

tency and bandwidth on systems similar to those in this work, as well as the

NvSwitch technology not available at the time of writing.

The cuda-benches software [74] includes a variety of CUDA-related mi-

crobenchmarks, including unified memory streaming and cudaMemcpyAsync.

Pai [83] develops some benchmarks for unified memory in CUDA 6.0. The

benchmarks are developed to understand which situations incur repeated

accesses, instead of measuring bandwidth. An associated (refereed) paper by

Pai et al. [84] motivates the creation of the microbenchmarks.

6.2 3D Stencil

Chapter 4 described a stencil library that incorporated automatic partition-

ing, data placement, and communication specialization. Prior work has fo-

cused on kernel performance and largely neglected communication consid-

erations. Some prior work also was unable to consider the multi-GPU or

heterogeneous communication case, as multi-node GPUs did not exist or

were not common at the time. Thibault and Senocak [85] use a single-node

multi-GPU platform, but do not overlap multiple communications on a single

GPU. Jacobsen, Thibault, and Senocak [86] use the staged method, and only

consider one GPU per rank. Yongpeng and Frank [87], Steuwer et al. [88],

Shimokawabe, Aoki, and Onodera [89], and Sourouri, Baden, and Cai [90]

all focus on abstraction, code generation and/or autotuning, but use staged

communication. Sourouri et al. [91] present a distributed stencil implemen-

tation, but all communication is staged.

Several works stand out as paying more attention to communication in

the context of stencil. Maruyama et al. [92] implement a kernel-based pack-

/unpack through zero-copy memory for non-unit-stride transfers, similar to

the pack/unpack scheme used for many transfers in this work. Lutz, Fensch,

and Cole [93] describe a code generation and autotuning framework. They

108

observe that multi-GPU PCIe heterogeneity causes some slowdown, and in-

clude data placement in their autotuning framework. However, instead of a

performance-model-based approach, they simply treat the placement space

as a black box and apply various optimization heuristics to it. Further-

more, they do not do any communication specialization depending on the

node topology. Sourouri et al. [94] investigate multi-GPU performance in

the context of a 3D stencil. They use multiple communication streams, and

multiple threads within a single address space to control multiple GPUs,

and overlap communications. This also allows them to bypass MPI commu-

nication for intra-node exchanges. They do not analyze the communication

performance, and do not consider node topology. Faraji, Mirsadeghi, and Af-

sahi [95] characterize the multi-GPU communication problem as a topology-

detection, communication evaluation, and mapping problem, like this work.

They do not use communication specialization, and instead use the staged

method.

6.3 MPI Datatype Handling

The datatype handling work presented in Chapter 5 distinguishes itself from

related work in three ways. First, TEMPI can be used today without wait-

ing for MPI implementers or HPC system administrators. Second, while

prior work uses GPU kernels to accelerate datatype operations, TEMPI is

the first work that shows transformations on structured datatypes for canon-

icalization (as opposed to handling specific cases, or reducing everything to

a list of offsets and lengths). This provides wide datatype coverage, tiny

GPU memory consumption for metadata, and fast generic kernels. Third,

prior work examines how to integrate data type handling into MPI more

deeply. As TEMPI uses a library-interposer interface on top of MPI, it is not

able to make those low-level changes. Despite that, enormous performance

improvement is obtained.

The MPITypes library [96] is one of the first attempts to generalize datatype

handling outside of MPI. It provides several functions for flattening and copy-

ing datatypes, and a framework for extending those operations. TEMPI tries

to maintain the structured information of types so the MPITypes operations

are not directly applicable.

109

Wang et al. [59] describe an early approach in MVAPICH2. Several op-

tions are considered, ultimately selecting a pipelined version of the “staged”

method that uses cudaMemcpy2D instead of a kernel. Since MVAPICH

1.8a2, MVAPICH had accelerated support for derived types created through

MPI type vector or MPI Type create hindexed, as long as the base type is

a named type. Since MVAPICH 2.2, it has used kernels to accelerate some

operations [97], which is still the case as of 2.3.4. Different kernels for dif-

ferent named datatypes exist, but no optimizations are present for nested

datatypes, or operations on more than one datatype.

Jenkins et al. [63] provide fast handling of arbitrary MPI datatypes on

the GPU. Nested types are represented by a tree structure that must be

traversed by each GPU thread using division, modulo, and binary search

operations. They restrict inter-node communication to the one-shot method.

Section 5.5 described how that is not always preferable due to the relative

cost of zero-copy pack operations vs. explicit data transfer.

Shi et al. [60] introduce Hand, an approach for non-contiguous data move-

ment in MPI. Hand also also explicitly breaks the problem into transforma-

tion and kernel selection phases. Hand defines specific kernels for handling

vector, hvector, subarray, and indexed block types. For other datatypes, it

transforms a variety of datatypes into a blocklist, for which it has a spe-

cific kernel implementation. Instead, TEMPI recognizes that nested, strided

types reduce to (essentially) a subarray, and explicitly designs a transforma-

tion and optimal packing kernel to cover all of those scenarios.

Wu et al. [61] describe a fork of OpenMPI that integrates derived datatype

handling both on the GPU itself as well as communication between nodes.

The datatype is ultimately represented as a list of blocks, and blocks are

partitioned among separate kernels with pipelined communication. It also

identifies that full GPU resources for handling non-contiguous data are not

needed to saturate the communication links. This fork has remained un-

merged and not publicly available.

Chu et al. [56] recognize that one of the challenges of all prior work is

the latency of kernel launches. Like prior work, they also represents the

datatypes as a list of displacements and lengths. Similar to this work, they

define extraction, conversion, and caching steps, and use one-shot packing

and unpacking. Unlike TEMPI, they do not recognize when the one-shot

packing to the host is slower, due to inefficiency of packing and unpacking

110

over the interconnect. Chu et al. [57] identify that a major cost of transfer

is the launch of the packing kernels. They develop an engine that is able to

merge various packing requests into a single kernel launch. TEMPI addresses

the packing kernel launch cost by issuing a single kernel for multiple copies

of the same MPI datatype, but cannot fuse further than that. These two

works appear to have been integrated into MVAPICH2-GDR. MVAPICH

does not include handling for generic datatypes, but does have more primitive

handling for specific datatypes.

Hashmi et al. [62] describe a zero-copy-based data movement system for

MPI datatypes. They include kernels where a warp is responsible for a con-

tiguous block in a block list. They also describe a variety of integrations

with the underlying communication library, which TEMPI is unable to ad-

dress due to its interposer model.

6.4 Scientific Libraries

A variety of projects attempt to bring a broad suite of distributed comput-

ing techniques under a single umbrella to accelerate the development of dis-

tributed codes. Broadly, these libraries all recognize that developing parallel

high-performance code is especially challenging due to the many relevant as-

pects of system performance. They try to provide fast primitives and parallel

algorithms upon which applications can be developed.

CMSSL [98] is a scientific library for the CM-2, CM-200, and CM-5 com-

puter systems that provides routines for data distribution and some opera-

tions that are independent of underlying data distribution. Of particular note

is automatic algorithm selection at runtime, similar to the stencil commu-

nication library and TEMPI. For on-node computation CMSSL transforms

the loop iteration space of various operations according to the size of differ-

ent levels of the memory hierarchy. The stencil communication library takes

a similar style for stencil communication specifically, where implementation

decisions are made according to the theoretical properties of the system.

TEMPI takes this a step further by trying to optimize communication ac-

cording to measured performance instead of theoretical properties. TEMPI’s

approach should allow it to automatically support machines which do not yet

exist, but have performance characteristics that are predictable from current

111

trends. For distributed communication, CMSSL attempts to adjust the al-

gorithm to minimize data movement based on properties of the inputs (e.g.,

matrix shapes in matrix multiplication). The stencil communication library

take a similar approach when partitioning the distributed grid to minimize

communication.

Other similar efforts include PetSC [99, 100, 101], FleCSI [102], Zoltan

[103], Hypre [104], and Trilinos [105]. These libraries target different ap-

plications, including partial differential equations (PetSC), dynamic load

balancing and graph applications (Zoltan), multi-physics (FleCSI), linear

solvers (HYPRE), and general solvers (Trilinos). They share an approach,

which provides data structures and interfaces to abstract away the details

of distributed memory, allowing the application code to focus on compu-

tation instead of communication and data placement. The work described

herein shares a similar goal, but generally distinguishes itself by creating a

communication plan derived from measured system characteristics.

112

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The work described herein shows that empirical communication measure-

ments can be used to automatically schedule and execute intra- and inter-

node communication in a modern heterogeneous system, providing “hand-

tuned” performance without the need for complex or error-prone commu-

nication development at the application level. The rise of accelerators has

changed the high-performance computing paradigm, making movement of

data a first-class concern, and performance improvements can be realized

from measurement of hardware interconnects

Chapter 3 establishes that the effective bandwidth of the interconnect can-

not be derived from the technical specifications. The source and destination

memory types, API choice, cache, and underlying hardware all contribute to

the ultimate performance, so making the proper selection is crucial. That

chapter also described procedures for accurately doing the measurements on

the CUDA platform. The software is open-source and freely available.

Chapter 4 applies the insights from Chapter 3 to a stencil library. The

library is designed around qualitative observations, especially the significant

cost of CUDA runtime APIs, the lack of latency improvement provided by

multiple CUDA threads, the improved interconnect utilization with simul-

taneous bidirectional transfers, and the measurable bandwidth impact of

“near” and “far” GPUs. CUDA runtime API performance is mitigated by

using the CUDA graph API to capture and replay communication opera-

tions. Interconnect utilization was achieved by designing the library to over-

lap CUDA and MPI operations. GPU locality was captured with a simple

data placement scheme. Ultimately, the library was able to reduce the itera-

tion time of a state-of-the-art stencil code by a geometric mean of 1.17×, or

113

1.45× at 3072 GPUs.

Chapter 5 extends the work in two further ways. First, it uses the MPI

implementation on the Summit supercomputer as a platform for integrating

some of the stencil communication techniques directly into MPI. A novel

MPI derived datatype handling strategy is introduced, which allows fast

GPU performance on a variety of regular MPI datatypes, with a compact

representation. Quantitative system performance modeling supported by

measurements from Chapter 3 are used to improve the derived datatype

handling of MPI communication primitives. Additionally, a low-overhead

caching scheme is used to allow the implementation to be tuned at runtime

based on the nature of the moved data.

Ultimately, this work finds that it is possible to take advantage of careful

measurement of data-movement performance to improve high-level libraries

and underlying communication primitives. The code for each of the three

main chapters is available under a liberal license. At the time of writing, all

projects are developed on Github, with additional copies of the source code

uploaded to Zenodo. The Appendix describes in more detail how to retrieve

the source code.

7.2 Future Work

7.2.1 Comm|Scope

Despite Comm|Scope’s comprehensive evaluation of CUDA point-to-point

bulk transfer primitives, zero-copy and managed memory are both modali-

ties where bulk transfer bandwidth provides only superficial insight. Those

modalities allow flexibility of access granularity, density, and alignment, all of

which impact performance independently. Furthermore, they enable atomic

operations, which can be used for fine-grained coordination between CPUs

and GPUs. None of these advanced considerations are measured.

An additional challenge comes in the face of multiple communicating GPUs.

Depending on the interconnect topology, contention may appear on some of

the links, further complicating evaluation. This scenario is of particular in-

terest in shared or virtualized environments, and in multi-GPU applications.

Similarly, MPI collectives allow multiple off-node GPUs to communicate si-

114

multaneously, layering the complexity of contention and MPI primitives.

Further complexity is introduced when GPUs communicate off-node. Chap-

ter 5 demonstrated how even on-node bandwidth measurements can be used

to improve the performance of individual MPI primitives. Just as Comm-

|Scope evaluates the various CUDA communication schemes, it should be

extended to measure the various MPI methods. These are analogous to the

intra-node communication primitives and face similar problems with vari-

ability, advanced features, parallel communication, and contention.

In order to fully support performance-driven automation for distributed

systems, Comm|Scope should be expanded to include evaluations of MPI

collectives as well. Using the Comm|Scope measurements to influence appli-

cation performance was hampered by the interaction of multiple simultaneous

primitives. These collectives layer the challenges of multi-GPU communica-

tion with off-node primitives, but once the simpler operations are understood,

it may be possible to reliably measure and understand the aggregate behav-

ior.

7.2.2 Stencil Communication Library

The pack/unpack performance was largely unconsidered in the stencil library

design and evaluation. Work on TEMPI showed that packing data into the

host may sometimes be preferable to packing on the device, and the stencil

communication library could incorporate that result. The stencil commu-

nication library’s partitioning strategy assumes that all bytes have equal

communication cost. However, each “face” of the 3D subgrid has a different

stride, and TEMPI shows that the communication performance is influenced

by the strategy for handling the non-contiguous data. A performance model

for each face should be developed. The same holds true for the actual cost of

communicating that face used instead of the number of bytes communicated.

Sophisticated stencil codes feature dynamic mesh refinement, where re-

gions of interest are re-discretized at higher resolution to capture smaller-

scale behavior more accurately. Since it is not known ahead of time where

in the grid these regions will occur, they are dynamically detected, and grid

adjusted accordingly. This provides a challenge for static communication

planning, as the requirements may change from iteration to iteration, and

115

neighboring data needs to be up- and down-sampled across the refinement

boundary. While the up- and down-sampling is related to communication,

it is likely that some input would be required from the application, as the

strategy would affect the accuracy of the results. As long as the dynamic

refinement does not change frequently, it would be possible to create a new

static plan after each refinement and accumulate the results over many iter-

ations. In this case, the cost of the communication planning would become

a primary concern.

Certain implementation decisions of the library were not evaluated. The

stencil library choses to implement the non-contiguous data handling through

GPU kernels. This design allows full flexibility for arbitrary block sizes and

alignments. However, it competes with the application code for GPU com-

pute resources. Certain transfers may be compatible with the GPU’s DMA

engine, allowing the GPU compute elements to remain uninvolved. The

stencil library does not take advantage of MPI persistent communications

(MPI Send init, etc.). These operations promise to remove some of the over-

head of repeated communication, for example, ensuring that the receiver has

buffer space allocation to receive a large message. With a comprehensive

benchmark like Comm|Scope extended to measure the actual impact of per-

sistent communications, the appropriate implementation could be selected in

an automatic way. The performance effect of the cudaGraphAPI was never

quantitatively examined. It is expected to be most relevant when commu-

nication is fastest, as it reduces the overhead for each communication. The

final consideration would be to redesign the API to allow exterior gridpoint

computations to begin as soon as the corresponding part of the halo exchange

is complete. In certain circumstances, this could allow the exterior gridpoint

computations to overlap with the communication.

7.2.3 TEMPI

Chapter 5 examined how to generalize lessons from the CUDA+MPI stencil

code into MPI in general. The amount of work that remains to be done in this

area is vast. MPI collectives provide an opportunity to batch GPU operations

effectively. Previous work in MPI derived types could be integrated to MPI’s

system to support indexed types. Persistent communications provide an

116

opportunity to remove GPU kernel overhead.

While the data placement approach provides a large improvement in itera-

tion time, it often takes tens or hundreds of thousands of iterations to recoup

the initial cost of the placement. Fundamentally, data placement algorithms

will trade off speed with quality, and this is an area not investigated in this

work.

TEMPI could also be used to introduce and evaluate experimental ex-

tensions to MPI’s interface. Such extensions could bring new high-level

operations into MPI or allow experimentation with various implementation

strategies for existing functions. A “custom collective” might be of partic-

ular interest, as it would allow an application to describe a communication

pattern (like how an application can describe non-contiguous data). This

would allow the MPI implementation to plan and batch various accelerator

operations.

TEMPI was designed with this future work in mind, and should allow

future research capabilities to be added to any existing MPI platform.

7.2.4 High-Level Programming Systems

A high-level programming system typically adopts a more task-oriented model.

Each task comes with input and output data, and the system is responsible

for deciding when and where those tasks run (subject to dependency con-

straints). In the most holistic case, a high-level description can decouple the

desired functionality from its implementation and provide portability across

architectures and machines. On the surface, a high-level system is ripe for

the kinds of automatic performance-dependent decisions described in this

work. The key challenge would be to sufficiently minimize any runtime cost

so that better utilization of the underlying system becomes the bottleneck.

Any high-level system that deals with non-contiguous data will be able

to make use of the datatype handling strategy described in this work. In

this work, it was fully integrated with MPI, but in general, the process of

going from a description of non-contiguous data to a fast handling strategy

is a valuable one. The most straightforward approach would be to extract

that code out into its own library. That library could mirror the design of

MPI’s derived datatype system, or it could adopt a similar interface. Another

117

approach would be to integrate it directly into a compiler or runtime system.

This would allow the higher-level application code to entirely ignore the non-

contiguous nature of the data.

118

Appendix

Artifacts

The source code for Comm|Scope is available under the Apache License

2.0. It is currently hosted at https://github.com/c3sr/comm_scope. An

archive of the state of the code at the time of writing was uploaded to Zenodo

[106], with the DOI 10.5281/zenodo.4586913 [107].

The source code for the stencil library is available under the Boost Soft-

ware License 1.0. It is currently hosted at https://github.com/cwpearson/

stencil. An archive of the state of the code at the time of writing was up-

loaded to Zenodo, with the DOI 10.5281/zenodo.4635277 [108].

The source code for TEMPI is available under the Boost Software License

1.0. It is currently hosted at https://github.com/cwpearson/tempi. An

archive of the state of the code at the time of writing was also uploaded to

Zenodo, with the DOI 10.5281/zenodo.4584107 [109].

119

https://github.com/c3sr/comm_scope
https://github.com/cwpearson/stencil
https://github.com/cwpearson/stencil
https://github.com/cwpearson/tempi

References

[1] Intel, “Intel AVX,” 2017. [Online]. Available: https://software.intel.
com/en-us/isa-extensions/intel-avx

[2] System V Application Binary Interface AMD64 Architecture Processor
Supplement Draft Version 0.99.4, Advanced Micro Devices Std. 0.99.4,
2010.

[3] ARM, “NEON,” 2017. [Online]. Available: https://developer.arm.
com/technologies/neon

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-
jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” arXiv preprint
arXiv:1704.04760, 2017.

[5] Huawei, “Kirin 970,” 2017. [Online]. Available: http://consumer.
huawei.com/en/press/news/2017/ifa2017-kirin970/

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[7] Intel, “Intel Nervana hardware,” 2017. [Online]. Available: https:
//www.intelnervana.com/intel-nervana-hardware/

[8] A. Kandangath and G. Badie, “What’s new
in Core Motion,” 2011, Apple. [Online]. Avail-
able: https://developer.apple.com/devcenter/download.
action?path=/wwdc 2011/adc on itunes wwdc11 sessions pdf/
423 whats new in core motion.pdf

[9] “Virtex UltraSCALE+ product table,” 2018, Xilinx. [Online].
Available: https://www.xilinx.com/products/silicon-devices/fpga/
virtex-ultrascale-plus.html#productTable

120

https://software.intel.com/en-us/isa-extensions/intel-avx
https://software.intel.com/en-us/isa-extensions/intel-avx
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
http://consumer.huawei.com/en/press/news/2017/ifa2017-kirin970/
http://consumer.huawei.com/en/press/news/2017/ifa2017-kirin970/
https://www.intelnervana.com/intel-nervana-hardware/
https://www.intelnervana.com/intel-nervana-hardware/
https://developer.apple.com/devcenter/download.action?path=/wwdc_2011/adc_on_itunes__wwdc11_sessions__pdf/423_whats_new_in_core_motion.pdf
https://developer.apple.com/devcenter/download.action?path=/wwdc_2011/adc_on_itunes__wwdc11_sessions__pdf/423_whats_new_in_core_motion.pdf
https://developer.apple.com/devcenter/download.action?path=/wwdc_2011/adc_on_itunes__wwdc11_sessions__pdf/423_whats_new_in_core_motion.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productTable

[10] “Intel Stratix 10 FPGAs,” 2018, Intel. [Online].
Available: https://www.intel.com/content/www/us/en/products/
programmable/fpga/stratix-10.html

[11] “About Agilio SmartNICs,” 2018, Netronome. [Online]. Available:
https://www.netronome.com/products/smartnic/overview/

[12] L. Codrescu, “Qualcomm Hexagon DSP,” 2013, Qualcomm.
[Online]. Available: https://developer.qualcomm.com/qfile/27696/
qualcomm-hexagon-architecture.pdf

[13] “Digital signal processors,” 2018, NXP. [Online]. Available:
https://www.nxp.com/products/processors-and-microcontrollers/
additional-processors-and-mcus/digital-signal-processors:
Digital-Signal-Processors

[14] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[15] “Vision processing unit,” 2018, Movidius. [Online]. Available:
https://www.movidius.com/solutions/vision-processing-unit

[16] “The evolution of EyeQ,” 2018, Mobileye. [Online]. Available:
https://www.mobileye.com/our-technology/evolution-eyeq-chip/

[17] N. Baker, “Mixed reality,” Youtube. [Online]. Available: https:
//www.youtube.com/watch?v=u0eBd2m wEs#t==27m16s

[18] PCI-SIG, PCI Local Bus Specification, Std. 3.0, 2001. [Online].
Available: https://pcisig.com/specifications

[19] Intel, Accelerated Graphics Port Interface Specification, Std. 1.0, 1996.
[Online]. Available: http://www.playtool.com/pages/agpcompat/
agp10.pdf

[20] Intel, Accelerated Graphics Port Interface Specification Revision 2.0,
Std. 2.0, 1998. [Online]. Available: http://www.motherboards.org/
files/techspecs/agp20.pdf

[21] Intel, AGP Interface Specification, Std. 3.0, 2002. [Online]. Avail-
able: http://download.intel.com/support/motherboards/desktop/sb/
agp30.pdf

[22] PCI-SIG, PCI-X Addendum to the PCI Local Bus Specification, Std.
1.0a, 2000.

121

https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10.html
https://www.netronome.com/products/smartnic/overview/
https://developer.qualcomm.com/qfile/27696/qualcomm-hexagon-architecture.pdf
https://developer.qualcomm.com/qfile/27696/qualcomm-hexagon-architecture.pdf
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/digital-signal-processors:Digital-Signal-Processors
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/digital-signal-processors:Digital-Signal-Processors
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/digital-signal-processors:Digital-Signal-Processors
https://www.movidius.com/solutions/vision-processing-unit
https://www.mobileye.com/our-technology/evolution-eyeq-chip/
https://www.youtube.com/watch?v=u0eBd2m_wEs#t==27m16s
https://www.youtube.com/watch?v=u0eBd2m_wEs#t==27m16s
https://pcisig.com/specifications
http://www.playtool.com/pages/agpcompat/agp10.pdf
http://www.playtool.com/pages/agpcompat/agp10.pdf
http://www.motherboards.org/files/techspecs/agp20.pdf
http://www.motherboards.org/files/techspecs/agp20.pdf
http://download.intel.com/support/motherboards/desktop/sb/agp30.pdf
http://download.intel.com/support/motherboards/desktop/sb/agp30.pdf

[23] PCI-SIG, PCI-X Addendum to the PCI Local Bus Specification, Std.
2.0, 2002.

[24] PCI-SIG, “PCI Express 3.0 frequently asked questions,” 2014.
[Online]. Available: http://www.pcisig.com/news room/faqs/pcie3.
0 faq/#EQ2

[25] PCI-SIG, “PCI Express 4.0 frequently asked questions,” 2014.
[Online]. Available: http://www.pcisig.com/news room/faqs/FAQ
PCI Express 4.0/#EQ3

[26] Nvidia, “Nvidia Tesla P100,” Tech. Rep., 2016. [Online].
Available: https://images.nvidia.com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf

[27] Nvidia, “Nvidia Tesla V100 GPU architecture,” Tech. Rep.,
2017. [Online]. Available: https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf

[28] Nvidia, “Nvidia A100 tensor core GPU architecture,” Tech. Rep., 2020.
[Online]. Available: https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

[29] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and
W.-m. Hwu, “EMOGI: Efficient memory-access for out-of-memory
graph-traversal in GPUs,” Proc. VLDB Endow., vol. 14, no. 2, p.
114–127, Oct. 2020. [Online]. Available: https://doi.org/10.14778/
3425879.3425883

[30] M. standards committee, MPI: A Message-Passing Interface Standard
Version 3.1, Std. 3.1, 2015. [Online]. Available: https://www.
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[31] IBM, “IBM Spectrum MPI version 10 release 1 user’s guide,”
Tech. Rep., 2016. [Online]. Available: https://www.ibm.com/support/
knowledgecenter/SSZTET EOS/eos/guide 101.pdf

[32] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open MPI: A flexible
high performance MPI,” in Parallel Processing and Applied Mathemat-
ics, R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Waśniewski, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 228–239.

[33] W. Gropp, “MPICH2: A new start for MPI implementations,” in Pro-
ceedings of the 9th European PVM/MPI Users’ Group Meeting on Re-
cent Advances in Parallel Virtual Machine and Message Passing Inter-
face. Berlin, Heidelberg: Springer-Verlag, 2002, p. 7.

[34] The MVAPICH Team, “Mvpiach2-gdr 2.3.5,” Tech. Rep., 2020.

122

http://www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2
http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/#EQ3
http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/#EQ3
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://doi.org/10.14778/3425879.3425883
https://doi.org/10.14778/3425879.3425883
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.ibm.com/support/knowledgecenter/SSZTET_EOS/eos/guide_101.pdf
https://www.ibm.com/support/knowledgecenter/SSZTET_EOS/eos/guide_101.pdf

[35] C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung,
J. Xiong, and W.-M. Hwu, “Evaluating characteristics of CUDA
communication primitives on high-bandwidth interconnects,” in
Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3297663.3310299 p. 209–218.

[36] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The
scalable heterogeneous computing (SHOC) benchmark suite,” in
Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, ser. GPGPU-3. New York, NY,
USA: Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1735688.1735702 p. 63–74.

[37] R. J. Wysocki, intel pstate CPU Perfor-
mance Scaling Driver, 2017. [Online]. Avail-
able: https://web.archive.org/web/20201112004549/https://www.
kernel.org/doc/html/v4.12/admin-guide/pm/intel pstate.html

[38] POWER ISA, 2.07B ed., IBM, Jan. 2018.

[39] AMD64 Architecture Programmer’s Manual, 3.26 ed., Advanced Micro
Devices, May 2018.

[40] num - NUMA policy library, man7.org, 2020. [Online]. Available:
https://man7.org/linux/man-pages/man3/numa.3.html

[41] “Summit user guide,” 2020. [Online]. Available: https://docs.olcf.ornl.
gov/systems/summit user guide.html

[42] C. B. Stunkel, R. L. Graham, G. Shainer, M. Kagan, S. S. Sharkawi,
B. Rosenburg, and G. A. Chochia, “The high-speed networks of the
Summit and Sierra supercomputers,” IBM Journal of Research and
Development, vol. 64, no. 3/4, pp. 3:1–3:10, 2020.

[43] A. B. Caldiera, “IBM power system AC922 introduction and
technical overview,” Tech. Rep., 2018. [Online]. Available: https:
//www.redbooks.ibm.com/redpapers/pdfs/redp5472.pdf

[44] C. Pearson, M. Hidayetoğlu, M. Almasri, O. Anjum, I. Chung, J. Xiong,
and W. W. Hwu, “Node-aware stencil communication for heteroge-
neous supercomputers,” in 2020 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), 2020, pp. 796–
805.

123

https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1145/1735688.1735702
https://web.archive.org/web/20201112004549/https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://web.archive.org/web/20201112004549/https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://man7.org/linux/man-pages/man3/numa.3.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://www.redbooks.ibm.com/redpapers/pdfs/redp5472.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5472.pdf

[45] H. Hotta, M. Rempel, and T. Yokoyama, “High-resolution calculations
of the solar global convection with the reduced speed of sound tech-
nique. I. the structure of the convection and the magnetic field without
the rotation,” The Astrophysical Journal, vol. 786, no. 1, p. 24, 2014.

[46] A. Beresnyak, “Spectra of strong magnetohydrodynamic turbulence
from high-resolution simulations,” The Astrophysical Journal Letters,
vol. 784, no. 2, p. L20, 2014.

[47] O. Anjum, G. de Gonzalo Simon, M. Hidayetoglu, and W.-M. Hwu,
“An efficient GPU implementation technique for higher-order 3D sten-
cils,” in 2019 IEEE 21st International Conference on High Perfor-
mance Computing and Communications(HPCC). IEEE, 2019, pp.
552–561.

[48] J. Skála, F. Baruffa, J. Büchner, and M. Rampp, “The 3D MHD code
GOEMHD3 for astrophysical plasmas with large Reynolds numbers-
code description, verification, and computational performance,” As-
tronomy & Astrophysics, vol. 580, p. A48, 2015.

[49] J. Pekkilä, M. S. Väisälä, M. J. Käpylä, P. J. Käpylä, and O. Anjum,
“Methods for compressible fluid simulation on gpus using high-order
finite differences,” Computer Physics Communications, vol. 217, pp.
11–22, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S001046551730098X

[50] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka, “A
versatile software systolic execution model for GPU memory-bound
kernels,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, 2019, pp. 1–
81.

[51] “Nvidia GPUDirect,” 2021. [Online]. Available: https://developer.
nvidia.com/gpudirect

[52] M. A. Heroux, J. Dongarra, and P. Luszczek, “HPCG benchmark tech-
nical specification,” Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), Tech. Rep., 2013.

[53] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
“Zoltan data management service for parallel dynamic applications,”
Computing in Science & Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[54] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” 1966.

[55] Nvidia, “NVIDIA Nsight Systems,” 2021. [Online]. Available:
https://developer.nvidia.com/nsight-systems

124

https://www.sciencedirect.com/science/article/pii/S001046551730098X
https://www.sciencedirect.com/science/article/pii/S001046551730098X
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/nsight-systems

[56] C. Chu, J. M. Hashmi, K. S. Khorassani, H. Subramoni, and D. K.
Panda, “High-performance adaptive MPI derived datatype communi-
cation for modern multi-GPU systems,” in 2019 IEEE 26th Interna-
tional Conference on High Performance Computing, Data, and Ana-
lytics (HiPC), 2019, pp. 267–276.

[57] C. H. Chu, K. S. Khorassani, Q. Zhou, H. Subramoni, and D. K. Panda,
“Dynamic kernel fusion for bulk non-contiguous data transfer on GPU
clusters,” in 2020 IEEE International Conference on Cluster Comput-
ing (CLUSTER), 2020, pp. 130–141.

[58] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
MVAPICH project: Transforming research into high-performance
MPI library for HPC community,” Journal of Computational Science,
p. 101208, 2020. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877750320305093

[59] H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, and
D. K. Panda, “Optimized non-contiguous MPI datatype communica-
tion for GPU clusters: Design, implementation and evaluation with
MVAPICH2,” in 2011 IEEE International Conference on Cluster Com-
puting, 2011, pp. 308–316.

[60] R. Shi, X. Lu, S. Potluri, K. Hamidouche, J. Zhang, and D. K. Panda,
“HAND: A hybrid approach to accelerate non-contiguous data move-
ment using MPI datatypes on GPU clusters,” in 2014 43rd Interna-
tional Conference on Parallel Processing, 2014, pp. 221–230.

[61] W. Wu, G. Bosilca, R. vandeVaart, S. Jeaugey, and J. Dongarra,
“GPU-aware non-contiguous data movement in open MPI,” in
Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’16.
New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi-org.proxy2.library.illinois.edu/
10.1145/2907294.2907317 p. 231–242.

[62] J. M. Hashmi, C.-H. Chu, S. Chakraborty, M. Bayatpour, H. Subra-
moni, and D. K. Panda, “FALCON-X: Zero-copy MPI derived datatype
processing on modern CPU and GPU architectures,” Journal of Par-
allel and Distributed Computing, 2020.

[63] J. Jenkins, J. Dinan, P. Balaji, T. Peterka, N. F. Samatova, and
R. Thakur, “Processing MPI derived datatypes on noncontiguous
GPU-resident data,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 10, pp. 2627–2637, 2014.

125

http://www.sciencedirect.com/science/article/pii/S1877750320305093
http://www.sciencedirect.com/science/article/pii/S1877750320305093
https://doi-org.proxy2.library.illinois.edu/10.1145/2907294.2907317
https://doi-org.proxy2.library.illinois.edu/10.1145/2907294.2907317

[64] A. Bar-Noy and S. Kipnis, “Designing broadcasting algorithms in the
postal model for message-passing systems,” in Proceedings of the Fourth
Annual ACM Symposium on Parallel Algorithms and Architectures,
1992, pp. 13–22.

[65] A. Bienz, L. N. Olson, W. D. Gropp, and S. Lockhart, “Mod-
eling data movement performance on heterogeneous architectures.”
arXiv:2010.10378v2, 2020.

[66] P. Sanders and C. Schulz, “Think Locally, Act Globally: Highly Bal-
anced Graph Partitioning,” in Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13), ser. LNCS, vol.
7933. Springer, 2013, pp. 164–175.

[67] C. Schulz and J. L. Träff, “Better Process Mapping and Sparse
Quadratic Assignment,” in Proceedings of the 16th International Sym-
posium on Experimental Algorithms (SEA’17), ser. LIPIcs, vol. 75.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 4:1–
4:15.

[68] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and
M. Boyle, “Recommendation for the entropy sources used for random
bit generation,” NIST, Tech. Rep. 800-90B, 2018.

[69] N. R. Tallent, N. A. Gawande, C. Siegel, A. Vishnu, and A. Hoisie,
“Evaluating on-node GPU interconnects for deep learning workloads,”
in International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems. Springer,
2017, pp. 3–21.

[70] T. Ben-Nun, “MGBench,” https://github.com/tbennun/mgbench,
2017.

[71] A. Li, S. L. Song, J. Cheng, X. Liu, N. Tallent, and K. Barker, “Tar-
tan: Evaluating modern GPU interconnect via a multi-GPU bench-
mark suite,” in International Symposium on Workload Characteriza-
tion, IEEE, 2017.

[72] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt, “An inves-
tigation of unified memory access performance in CUDA,” in High Per-
formance Extreme Computing Conference (HPEC), 2014 IEEE. IEEE,
2014, pp. 1–6.

[73] “CUDA 9.2 Toolkit Downloads,” https://developer.nvidia.com/
cuda-92-download-archive, NVIDIA, 2018.

[74] D. Ernst, “cuda-benches,” https://github.com/te42kyfo/
cuda-benches, 2019.

126

https://github.com/tbennun/mgbench
https://developer.nvidia.com/cuda-92-download-archive
https://developer.nvidia.com/cuda-92-download-archive
https://github.com/te42kyfo/cuda-benches
https://github.com/te42kyfo/cuda-benches

[75] A. Li, “Tartan,” https://github.com/uuudown/Tartan, 2018.

[76] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An asyn-
chronous multi-GPU programming model for irregular computations,”
in ACM SIGPLAN Notices, vol. 52, no. 8. ACM, 2017, pp. 235–248.

[77] K. Spafford, J. S. Meredith, and J. S. Vetter, “Quantifying NUMA
and contention effects in multi-GPU systems,” in Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics Process-
ing Units. ACM, 2011, p. 11.

[78] S. Mukherjee, Y. Sun, P. Blinzer, A. K. Ziabari, and D. Kaeli, “A com-
prehensive performance analysis of HSA and OpenCL 2.0,” in Perfor-
mance Analysis of Systems and Software (ISPASS), 2016 IEEE Inter-
national Symposium on. IEEE, 2016, pp. 183–193.

[79] S. Roberts, P. Ramanna, and J. Walthour, “Ac922 data movement for
coral,” in 2018 IEEE High Performance extreme Computing Confer-
ence (HPEC), 2018, pp. 1–5.

[80] Y. Gu, W. Wu, Y. Li, and L. Chen, “UVMBench: A comprehen-
sive benchmark suite for researching unified virtual memory in GPUs,”
arXiv preprint arXiv:2007.09822, 2020.

[81] S. Chien, I. Peng, and S. Markidis, “Performance evaluation of ad-
vanced features in CUDA unified memory,” in 2019 IEEE/ACM Work-
shop on Memory Centric High Performance Computing (MCHPC),
2019, pp. 50–57.

[82] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J.
Barker, “Evaluating modern GPU interconnect: PCIe, NVLink, NV-
SLI, NVSwitch and GPUDirect,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 94–110, 2020.

[83] S. Pai, “Benchmarking unified memory in CUDA 6.0,” https://www.
cs.rochester.edu/u/sree/automem/, 2018.

[84] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil, “Fast
and efficient automatic memory management for gpus using
compiler-assisted runtime coherence scheme,” in Proceedings of
the 21st International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2370816.2370824 p. 33–42.

[85] J. Thibault and I. Senocak, “CUDA implementation of a Navier-Stokes
solver on multi-GPU desktop platforms for incompressible flows,” in
47th AIAA aerospace sciences meeting including the new horizons fo-
rum and aerospace exposition, 2009, p. 758.

127

https://github.com/uuudown/Tartan
https://www.cs.rochester.edu/u/sree/automem/
https://www.cs.rochester.edu/u/sree/automem/
https://doi.org/10.1145/2370816.2370824

[86] D. Jacobsen, J. Thibault, and I. Senocak, “An MPI-CUDA imple-
mentation for massively parallel incompressible flow computations on
multi-GPU clusters,” in 48th AIAA Aerospace Sciences Meeting In-
cluding the New Horizons Forum and Aerospace Exposition, 2010, p.
522.

[87] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of
3D stencil codes on GPU clusters,” in Proceedings of the Tenth
International Symposium on Code Generation and Optimization, ser.
CGO ’12. New York, NY, USA: Association for Computing Machinery,
2012. [Online]. Available: https://doi.org/10.1145/2259016.2259037 p.
155–164.

[88] M. Steuwer, M. Haidl, S. Breuer, and S. Gorlatch, “High-level
programming of stencil computations on multi-GPU systems using the
SkelCL library,” Parallel Processing Letters, vol. 24, no. 03, p. 1441005,
2014. [Online]. Available: https://doi.org/10.1142/S0129626414410059

[89] T. Shimokawabe, T. Aoki, and N. Onodera, “High-productivity frame-
work for large-scale GPU/CPU stencil applications,” Procedia Com-
puter Science, vol. 80, pp. 1646–1657, 2016.

[90] M. Sourouri, S. B. Baden, and X. Cai, “Panda: A compiler frame-
work for concurrent CPU-GPU execution of 3D stencil computations
on GPU-accelerated supercomputers,” International Journal of Paral-
lel Programming, vol. 45, no. 3, pp. 711–729, 2017.

[91] M. Sourouri, J. Langguth, F. Spiga, S. B. Baden, and X. Cai,
“CPU+GPU programming of stencil computations for resource-
efficient use of GPU clusters,” in 2015 IEEE 18th International Con-
ference on Computational Science and Engineering, 2015, pp. 17–26.

[92] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis:
An implicitly parallel programming model for stencil computations
on large-scale GPU-accelerated supercomputers,” in Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York, NY,
USA: Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/2063384.2063398

[93] T. Lutz, C. Fensch, and M. Cole, “Partans: An autotuning
framework for stencil computation on multi-GPU systems,” ACM
Trans. Archit. Code Optim., vol. 9, no. 4, Jan. 2013. [Online].
Available: https://doi.org/10.1145/2400682.2400718

128

https://doi.org/10.1145/2259016.2259037
https://doi.org/10.1142/S0129626414410059
https://doi.org/10.1145/2063384.2063398
https://doi.org/10.1145/2400682.2400718

[94] M. Sourouri, T. Gillberg, S. B. Baden, and X. Cai, “Effective multi-
GPU communication using multiple CUDA streams and threads,” in
2014 20th IEEE International Conference on Parallel and Distributed
Systems (ICPADS), 2014, pp. 981–986.

[95] I. Faraji, S. H. Mirsadeghi, and A. Afsahi, “Topology-aware GPU se-
lection on multi-GPU nodes,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2016, pp.
712–720.

[96] R. Ross, R. Latham, W. Gropp, E. Lusk, and R. Thakur, “Processing
MPI datatypes outside MPI,” in Recent Advances in Parallel Virtual
Machine and Message Passing Interface, M. Ropo, J. Westerholm, and
J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 42–53.

[97] The MVAPICH Team, “MVAPICH2 changelog,” 2020. [Online].
Available: http://mvapich.cse.ohio-state.edu/static/media/mvapich/
MV2 CHANGELOG-2.3.4.txt

[98] S. L. Johnsson, “CMSSL: a scalable scientific software library,” in Pro-
ceedings of Scalable Parallel Libraries Conference, 1993, pp. 57–66.

[99] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp,
D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C.
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F.
Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Web
page,” https://www.mcs.anl.gov/petsc, 2019. [Online]. Available:
https://www.mcs.anl.gov/petsc

[100] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[101] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp,
D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes,
R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini,
H. Zhang, and H. Zhang, “PETSc users manual,” Argonne National
Laboratory, Tech. Rep. ANL-95/11 - Revision 3.14, 2020. [Online].
Available: https://www.mcs.anl.gov/petsc

[102] FleCSI Team, FleCSI, 2021. [Online]. Available: https://laristra.
github.io/flecsi/index.html

129

http://mvapich.cse.ohio-state.edu/static/media/mvapich/MV2_CHANGELOG-2.3.4.txt
http://mvapich.cse.ohio-state.edu/static/media/mvapich/MV2_CHANGELOG-2.3.4.txt
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://laristra.github.io/flecsi/index.html
https://laristra.github.io/flecsi/index.html

[103] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
“Zoltan data management services for parallel dynamic applications,”
Computing in Science and Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[104] E. Chow, A. J. Cleary, and R. D. Falgout, “Design of the hypre precon-
ditioner library,” Object Oriented Methods for Inter-operable Scientific
and Engineering Computing, pp. 106–116, 1999.

[105] The Trilinos Project Team, The Trilinos Project Website, 2020
(acccessed May 22, 2020). [Online]. Available: https://trilinos.github.io

[106] “Zenodo,” 2021. [Online]. Available: https://zenodo.org/

[107] C. Pearson, “c3sr/comm scope,” Mar. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4586913

[108] C. Pearson, “cwpearson/stencil,” Mar. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4635277

[109] C. Pearson, “cwpearson/tempi,” Mar. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4584107

130

https://trilinos.github.io
https://zenodo.org/
https://doi.org/10.5281/zenodo.4586913
https://doi.org/10.5281/zenodo.4635277
https://doi.org/10.5281/zenodo.4584107

	Chapter 1 Introduction
	Chapter 2 Background
	CUDA System
	CUDA Runtime API vs. CUDA Operation
	CUDA Streams and Events
	Data Movement in CUDA Systems
	Explicit Block and Strided Transfers
	Zero-copy and Direct Access
	Unified Memory

	Synchronous and Asynchronous CUDA Operations
	MPI
	CUDA-Aware MPI

	Chapter 3 Measurements
	Comm"026A30C Scope Design
	Low-overhead Bandwidth Measurement
	Bidirectional Transfer Measurements
	Measuring Synchronous Operations

	Libscope Design
	NUMA Pinning
	Compiler Side-Effects

	Observations and Guidelines
	Experimental System
	Bandwidth Utilization
	Locality
	Bidirectional Transfers
	Cache Effects
	Anisotropy
	CUDA Runtime

	Conclusion

	Chapter 4 3D Stencil Halo Exchange Library
	Distributed Stencil Overview
	Challenges with CUDA+MPI Stencil Codes
	Grid Partitioning
	Subgrid Placement
	Specialization
	Baseline CUDA-aware MPI Communication
	``Staged'' Communication
	``Colocated'' Communication
	``Peer'' and ``Kernel'' Communication
	Overlapping and State Transition Engine
	CUDA Graph API

	Astaroth Evaluation
	Flaws in Spectrum MPI CUDA-aware Implementation
	Node-Level and GPU-Level Data Placement
	Data Placement and Communication Method
	Data Placement and Iteration Time
	Specialization and Iteration Time
	Overall Improvement
	Test Simulation

	Conclusion

	Chapter 5 Non-contiguous Data Optimization for MPI
	Astaroth Communication in MPI
	Data Placement
	MPI_Neighbor_alltoallv and MPI_Isend
	Non-Contiguous Data

	MPI Strided Datatype Handling
	Type Translation
	Type Canonicalization
	Kernel Selection
	Example

	MPI_Type_commit
	MPI_Pack and MPI_Unpack
	MPI_Send, MPI_Recv, and Performance Modeling
	MPI_Isend/Irecv
	Graph Partitioning for Data Placement
	Interposer Library
	Interposer Architecture
	Temporary Buffers
	Performance Model Cache
	IID Testing

	3D Stencil Evaluation
	Conclusion

	Chapter 6 Related Work
	CUDA Communication Benchmarks
	3D Stencil
	MPI Datatype Handling
	Scientific Libraries

	Chapter 7 Conclusion and Future Work
	Conclusion
	Future Work
	Comm"026A30C Scope
	Stencil Communication Library
	TEMPI
	High-Level Programming Systems

	Appendix Artifacts
	References

