
Sandia National Laboratories is a multimission laboratory managed and operated by National 
Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA0003525.
SAND No. SAND2021-7110 C

TEMPI: An Interposed MPI Library with a Canonical Representation of CUDA-aware Datatypes

Automatic Data Transfer Selection

Orthogonal to the datatype canonicalization is the strategy for

moving the non-contiguous (unpacked) GPU data to the MPI

implementation. In all cases, a GPU kernel is responsible for

packing the data, but the packed buffer provided to MPI is different

CUDA-Aware System MPI TEMPI “One-shot”

MPI_Recv

TEMPI “Device”

MPI_Recv

TE
M
PI

TE
M
PI

TE
M
PI

TE
M
PI

System MPI

MPI_Recv

MPI_Send MPI_SendMPI_Send

System MPISystem MPI Tbaseline

Tcpu-pack

Tcpu-unpackmapped memory unpack

mapped memory pack

Tcpu-cpu Tgpu-gpu

Tgpu-pack

Tgpu-unpackglobal memory unpack

global memory pack

1

Figure 4: Diagram of the staged, one-shot, and device transfer methods
annotated with contributions to the performance model.

Figure 7: Elapsed MPI_Send time for the one-shot and device methods for a variety of objects and contiguous
block sizes. Automatic selection (auto) always chooses the fastest method.

Tcpu-pack Tgpu-unpack

Figure 5: Performance model used to select
the communication method at runtime.

The method used for each MPI communication is dynamically selected by evaluating the

performance model (Fig. 5) The model parameters are measured on the target platform ahead of

time (Fig. 6). The model is capable of selecting the correct implementation with negligible overhead

(Fig. 7

This work is supported by IBM-ILLINOIS Center for Cognitive Computing Systems Research (C3SR) - a research collaboration 
as part of the IBM AI Horizon Network. This research used resources of the Oak Ridge Leadership Computing Facility at the 
Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy Contract No. 
DE-AC05-00OR22725. This work utilizes resources supported by the National Science Foundation’s Major Research 
Instrumentation program, grant #1725729,as well as the University of Illinois at Urbana-Champaign

Carl Pearson1, Kun Wu2, I-Hsin Chung3, Jinjun Xiong3, Wen-Mei Hwu4

1Sandia National Labs / 2University of Illinois Electrical and Computer Engineering / 3IBM T. J. Watson Research / 4Nvidia Research

Work completed at University 
of Illinois prior to joining 

Sandia National Labs 

Introduction
TEMPI provides a transparent non-contiguous data-handling layer
compatible with various MPIs.
MPI Datatypes are a powerful abstraction for allowing an MPI

implementation to operate on non-contiguous data. CUDA-aware

MPI implementations must also manage transfer of such data

between the host system and GPU.

The non-unique and recursive nature of MPI datatypes mean

that providing fast GPU handling is a challenge. The same non-

contiguous pattern may be described in a variety of ways, all of

which should be treated equivalently by an implementation. This

work introduces a novel technique to do this for strided datatypes.

Methods for transferring non-contiguous data between the CPU

and GPU depends on the properties of the data layout. This work

shows that a simple performance model can accurately select the

fastest method.

Unfortunately, the combination of MPI software and system

hardware available may not provide sufficient performance. The

contributions of this work are deployed on OLCF Summit through

an interposer library which does not require privileged access to

the system to use.

1 byte

row of cont. bytes

plane of non-
cont. rows

cuboid of non-
cont. planes

column of non-
cont. bytes

plane of non-cont. 
columns

2D vector of bytes

3D subarray

Figure 1: Multiple MPI datatype descriptions to arrive at a common non-
contiguous region.

Figure 8: Halo exchange time and speedup on OLCF Summit.

T2

T1

T0

StreamData{...}

StreamData{...}

DenseData{...}
“contiguous block of bytes”

“non-contiguous blocks of T0”

...

“non-contiguous blocks of T1”

0 1 2 3 4

0 0 0 0 0

0 1 2 3 4

0 1 2 3 4

Figure 3: (a) The IR is canonicalized through repeated applications of four transformations. (b)
Dense folding, where contiguous DenseData are merged into a larger DenseData, (c) stream
elision, where single-element StreamData are removed, and (d) stream flattening transformation,
where a hierarchy of StreamData is transformed into a single equivalent StreamData. Sorting
(not shown) canonicalizes the order of the hierarchy.

(a) (c) (d)
Figure 2: TEMPI’s internal representation of the
strided MPI datatype. A hierarchy of StreamData
objects, each representing repeated copies of their
children. The base of the IR is a DenseData
representing a contiguous block of bytes.

0 1

0 1 0 1

0 1 2 4
Changed?

Dense Folding
Stream Elision

yes
no

Canonicalized IR

Translated IR

Stream Flattening
Sorting

(b)

When MPI_Type_commit is called, the MPI datatype is translated into an internal representation, a hierarchy of StreamData objects representing strided

repetitions of their child elements (Fig. 2). Since equivalent MPI datatypes will yield different IR, the IR is canonicalized through a series of transformations. A

data-packing kernel is selected based on the canonicalized IR. This kernel will be used to pack non-contiguous data in future MPI communication operations

before providing the packed data to the underlying system MPI.

Translation and Canonicalization

Halo Exchange Results
A 3D stencil halo exchange (double precision, eight quantities, radius 3)

accelerated by ~1000x on Summit at 3072 ranks (512 nodes, 6 GPUs per

node). The TEMPI library is loaded through the LD_PRELOAD mechanism

over the system MPI implementation code.

github.com/cwpearson/tempi

Figure 6: Example measured parameters used for runtime
dynamic communication method selection.


