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TEMPI: An Interposed MPI Library with a Canonical Representation of CUDA-aware Datatypes

Automatic Data Transfer Selection

Orthogonal to the datatype canonicalization is the strategy for

moving the non-contiguous (unpacked) GPU data to the MPI

implementation. In all cases, a GPU kernel is responsible for

packing the data, but the packed buffer provided to MPI is different
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Figure 4: Diagram of the staged, one-shot, and device transfer methods
annotated with contributions to the performance model.

Figure 7: Elapsed MPI_Send time for the one-shot and device methods for a variety of objects and contiguous
block sizes. Automatic selection (auto) always chooses the fastest method.
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Figure 5: Performance model used to select
the communication method at runtime.

The method used for each MPI communication is dynamically selected by evaluating the

performance model (Fig. 5) The model parameters are measured on the target platform ahead of

time (Fig. 6). The model is capable of selecting the correct implementation with negligible overhead

(Fig. 7
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Introduction
TEMPI provides a transparent non-contiguous data-handling layer
compatible with various MPIs.
MPI Datatypes are a powerful abstraction for allowing an MPI

implementation to operate on non-contiguous data. CUDA-aware

MPI implementations must also manage transfer of such data

between the host system and GPU.

The non-unique and recursive nature of MPI datatypes mean

that providing fast GPU handling is a challenge. The same non-

contiguous pattern may be described in a variety of ways, all of

which should be treated equivalently by an implementation. This

work introduces a novel technique to do this for strided datatypes.

Methods for transferring non-contiguous data between the CPU

and GPU depends on the properties of the data layout. This work

shows that a simple performance model can accurately select the

fastest method.

Unfortunately, the combination of MPI software and system

hardware available may not provide sufficient performance. The

contributions of this work are deployed on OLCF Summit through

an interposer library which does not require privileged access to

the system to use.
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Figure 1: Multiple MPI datatype descriptions to arrive at a common non-
contiguous region.

Figure 8: Halo exchange time and speedup on OLCF Summit.
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Figure 3: (a) The IR is canonicalized through repeated applications of four transformations. (b)
Dense folding, where contiguous DenseData are merged into a larger DenseData, (c) stream
elision, where single-element StreamData are removed, and (d) stream flattening transformation,
where a hierarchy of StreamData is transformed into a single equivalent StreamData. Sorting
(not shown) canonicalizes the order of the hierarchy.

(a) (c) (d)
Figure 2: TEMPI’s internal representation of the
strided MPI datatype. A hierarchy of StreamData
objects, each representing repeated copies of their
children. The base of the IR is a DenseData
representing a contiguous block of bytes.
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When MPI_Type_commit is called, the MPI datatype is translated into an internal representation, a hierarchy of StreamData objects representing strided

repetitions of their child elements (Fig. 2). Since equivalent MPI datatypes will yield different IR, the IR is canonicalized through a series of transformations. A

data-packing kernel is selected based on the canonicalized IR. This kernel will be used to pack non-contiguous data in future MPI communication operations

before providing the packed data to the underlying system MPI.

Translation and Canonicalization

Halo Exchange Results
A 3D stencil halo exchange (double precision, eight quantities, radius 3)

accelerated by ~1000x on Summit at 3072 ranks (512 nodes, 6 GPUs per

node). The TEMPI library is loaded through the LD_PRELOAD mechanism

over the system MPI implementation code.

github.com/cwpearson/tempi

Figure 6: Example measured parameters used for runtime
dynamic communication method selection.


