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ABSTRACT
As a rule, Top 500 class supercomputers are extensively
benchmarked as part of their acceptance testing process.
However, barring publicly posted LINPACK / HPCG results,
most benchmark results are often inaccessible outside the
hosting institution. Moreover, these higher level benchmarks
do not provide easy answers to common questions such as
“What is the realizable memory bandwidth?” or “What is the
launch latency on the accelerator?” To partially address these
issues, we executed selected single-node micro-benchmarks
— focused on latencies and memory bandwidth — on every
US Department of Energy system above rank 150 of the June
2023 Top 500 list, excepting NERSC’s Cori and ORNL’s Fron-
tier TDS (now decommissioned or repurposed). We hope to
provide an easy “first stop” reference for users of current Top
500 systems and inspire users and administrators of other
Top 500 systems to similarly compile and make available
benchmark results for their systems.

CCS CONCEPTS
• Computer systems organization→Multicore archi-
tectures; • Hardware → Testing with distributed and
parallel systems.
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1 INTRODUCTION
As part of acceptance testing, a Top 500 [17] class computer
typically undergoes extensive benchmarking. As an example,
an early (Knights Corner) precursor of Los Alamos National
Laboratory’s (LANL) Trinity machine was extensively docu-
mented with two micro-benchmarks as well as eight appli-
cation benchmarks by Rajan et al., [33] over a year before
Trinity’s expected full deployment. A similar set of bench-
marks would be run for the Knights Landing (KNL) nodes
later in the same acceptance testing process [35]. As is some-
what typical, these reports either consider the new system
in isolation (the former report) or compare the new system
against a single older system (in this case LANL’s prior Cielo
supercomputer). While they often give an excellent snap-
shot of the machine’s performance at a single point in time
(or over the period of acceptance testing as the software
toolchain is refined), these results tend to be myopic in focus
– after all, they are designed to test a single machine.

Developers of portable application codes are interested
in not one machine, but many. They often want to know
how machine characteristics compare between platforms.
Some information (e.g., GPU and CPU model information)
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are stored at the Top 500 site, as well as LINPACK [2] and
HPCG [7] benchmark information. But the Top 500 repre-
sents the apex of collected data for supercomputing systems.
To get other benchmarking data on these systems, one must
find the relevant technical reports or proceedings papers.

The goal of this paper is to provide a collection of bench-
marking results on all extant USDepartment of Energy (DOE)
systems of rank 150 or above in the June 2023 Top 500. These
represent systems of active use by DOE application devel-
opers and provide a “first stop” for developers looking for
answers to performance questions which can be addressed by
microbenchmarks. In particular, we focus on node level per-
formance. Inter-node performance, while of interest to appli-
cation developers, is highly dependent on network topology
and loading [20] and there is a distinct lack of vendor portable
methods to obtain information about where in the machine
a particular job happened to be scheduled [24]. But it is not
just for the reason of simplicity that node level performance
is the focus of this paper. For modern accelerator-based sys-
tems (at this point in time consisting NVIDIA or AMD GPUs)
the behavior of the accelerators can vary substantially, with
latencies and bandwidths changing noticeably between ac-
celerators. While accelerator vendors tend to highlight ideal
bandwidths in their promotional materials, latencies tend to
be mentioned only in passing in said material, if at all.
We present a summary of our chosen microbenchmarks

in section 3, distinguishing between benchmarks run on
accelerator and non-accelerator platforms. We then present
computational results on US DOE platforms in section 4.
Finally, we present conclusions and suggestions for future
work in section 5.

2 RELATEDWORK
Intra-node microbenchmarks have a long history of interest.
Our work is primarily distinguished not by the develop-
ment of novel microbenchmarks, but by leveraging a key
set of well-understood existing microbenchmarks to summa-
rize the performance of a representative set of high perfor-
mance systems. Benchmark suites like NAS Parallel Bench-
marks [18] and miniapplication suites like Mantevo [22] can
be helpful for understanding system performance on classes
of applications, but their increased complexity compared to
microbenchmarks can make it difficult to isolate particular
system characteristics like bandwidth and latency.
Perhaps the most well-known HPC microbenchmark is

STREAM, designed to capture sustainable memory band-
width [31]. That work popularized the key observation that
CPU performance was improving much faster than memory
bandwidth. Hence, this paper does not seek to measure sus-
tained FLOPs, but rather, various intra-node data transfer
rates. McCalpin went on to evaluate STREAM benchmark

results on more than a dozen systems [30], a model our work
seeks to emulate. On the inter-node side, Liu et al. [29] offer
a microbenchmark comparison of Myrinet, Quadrics, and
InfiniBand interconnects. They focus on latency, bandwidth,
CPU time, and message overheads.

The widespread adoption of GPU-accelerated systems has
led to corresponding interest in GPU microbenchmarks. Bu-
reddy et al. [21] introduce a wide variety of GPU+MPI mi-
crobenchmarks, which they evaluate on a single two-node
computer. This implicitly acknowledges the challenge of
such an evaluation on a realistic system, which we expect to
address in future work. Ji et al. [25] examine the relationship
between latency and transfer size for host-host, host-GPU,
and GPU-GPU communications, in the context of consider-
ing how to create a GPU-aware MPI implementation.
BabelStream is a version of STREAM ported to a variety

of parallel programming models. Deakin et al. [23] introduce
and evaluate BabelStream on 14 different CPUs and GPUs
for McCalpin’s STREAM plus the implementations created
for six additional programming models. We also use Babel-
Stream to compare achievable bandwidths on the systems,
but our system selection is motivated by a cross-section of
the Top500, rather than covering all practical GPU architec-
tures and programming models. Comm|Scope [32] and Li et
al. [27, 28] both developed and evaluated intra-node com-
munication microbenchmarks focused on high-bandwidth
interconnects (and collectives in Li et al.). Our work uses ver-
sion 0.12.0 of Comm|Scope, which added support for AMD
GPUs through the HIP programming model.
Khorassani, Chi, Subramoni, and Panda [26] provide a

detailed performance evaluation of SpectrumMPI, Open-
MPI+UCX, andMVAPICH2-GDR on Summit and Sierra. They
do not report numerical values for GPU-to-GPU MPI latency
(as we do in Table 5), but our results appear consistent with
theirs. They observe substantial latency differences in some
MPI implementations on the same system. Our evaluation
hews to the default configuration of each platform, but test-
ing multiple implementations when available may be con-
sidered as future work.
There have been a variety of independent efforts to de-

velop benchmarks for MPI (and pre-MPI) networks [5, 6, 14,
19]. All provide point-to-point latency benchmarks among
many others. Of particular interest is [19], which includes
a performance evaluation of networks from 1990 to 2002,
providing a useful reference at the time. Our work uses the
OSU implementation due to its familiarity to the community.

3 MICROBENCHMARKS OF INTEREST
Our selection of microbenchmarks reflects our focus on node-
level performance. We consider two different families of mi-
crobenchmarks, depending on whether the system contains
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OMP_NUM_THREADS OMP_PROC_BIND OMP_PLACES

1 not set not set
1 “true” not set

#cores not set not set
#cores “true” not set
#cores “spread” “cores”

#threads not set not set
#threads “true” not set
#threads “close” “threads”

Table 1: Combinations of OpenMP environment vari-
ables used for testing the maximum achievable host
memory bandwidth, both in the single thread and “all
threads” cases.

an accelerator (e.g. NVIDIA or AMD GPU), or not (e.g., a
CPU-only system or a self-hosted Intel Xeon Phi).

3.1 Non-Accelerator Architectures
For non-accelerator architectures, we consider host memory
bandwidth as measured by the OpenMP backend of Babel-
Stream 4.0 [23].We estimate realizable single-threadmemory
bandwidth as well as the bandwidth attainable when using
all available threads. As the maximum number of cores and
the maximum number of SMT threads are not always the
same, we test several combinations of OpenMP options and
report the highest realized memory bandwidth in section 4.
These combinations are listed on Table 1. BabelStream 4.0
does not account for any write-allocate traffic; the bandwidth
numerator is twice the allocation size for copy, mul, and dot,
and three times the allocation size for Add and Triad.
In addition, we measure point-to-point MPI latency us-

ing the OSU Micro-Benchmarks 7.1.1 [14]. For CPU systems
we estimate two different single-node latencies, latency be-
tween two MPI processes assigned to the same processor
(“on-socket”) and latency between MPI processes assigned
to two different processors (“on-node”). DOE applications
commonly use one MPI rank core for CPU runs, or per accel-
erator for GPU system (as opposed to one MPI rank per node
+ OpenMP within a node), so intra-node MPI communica-
tion performance is a relevant measurement. For Xeon Phi
systems, they are run in “quad” mode with a single NUMA
domain, but we still consider both a “close” core pair — cores
0 and 1 — which we record under “on-socket,” and a “far”
core pair — cores 0 and 𝑁 − 1, where 𝑁 is the number of
cores on the Xeon Phi — which is recorded under “on-node.”

GPU GPU

InfinityFabric (50 + 50 GB/s)
InfinityFabric (36 + 36 GB/s)

GPU GPU

GPU GPU

GPU GPU

CPU

A B

C D

Figure 1: Frontier node diagram, based on machine
documentation [11]. Arrows indicate different connec-
tions measured in latency experiments reported in Ta-
ble 5 and Table 6. RZVernal and Tioga share a similar
node topology.

3.2 Accelerator Architectures
As with the non-accelerator architectures (subsection 3.1),
we begin with the consideration of on-device memory la-
tency measured by the CUDA or ROCm (as appropriate)
backend of BabelStream 4.0 [23]. MPI latency is measured
in two different ways — host-to-host and device-to-device,
again via OSU Micro-Benchmarks 7.1.1 [14]. In addition,
we consider device kernel launch and empty queue wait
costs, as well as host-to-device, device-to-host and device-
to-device memory latency and bandwidth. These are com-
puted using Comm|Scope v0.12.0 [32]. Similar to the case of
non-accelerator machines, not all GPUs on the system are
equidistant from each other. The GPU topologies vary from
system to system, with relevant details presented in Figs.1,
2, and 3.

4 MICROBENCHMARKING RESULTS
In this study we consider every active US Department of En-
ergy (DOE) system above rank 150 in the June 2023 Top 500
list [17]. We divide the list into non-accelerator and acceler-
ator based systems, which are shown in Table 2 and Table 3
accordingly. Note that even in some cases where the Table 3
shows identical system summaries, there still can be differ-
ences as not every detail of the systems is represented. The
diagrams in Figure 1, Figure 2, and Figure 3 show the node
topologies of the different classes of GPU systems, providing
context for the results presented later in this section.

Binaries for each of the three tests, OSUMicro-Benchmarks,
BabelStream and Comm|Scope are executed 100 times. The
mean and standard deviation are calculated across those 100
tests. Within the binary tests are repeated multiple times.
We used the default settings for repeats within the binaries.
For the OSU Micro-Benchmarks, this setting involves 1,000
repeats for small messages and 100 messages for large ones.
For BabelStream and Comm|Scope it is 100 repeats.
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GPU

GPU

GPU

CPU

NVLink 3.0 (25 + 25 GB/s)
IBM POWER9 X-bus (64 GB/s)

GPU

GPU

GPU

CPU

A B

Figure 2: Summit node diagram, based on machine
documentation [16]. Arrows indicate different connec-
tions measured in latency experiments reported in Ta-
ble 5 and Table 6. Sierra and Lassen share a similar
node topology, except that they have four GPUs per
node rather than six.

GPU GPU

NVLink 3.0 (25 + 25 GB/s)
PCIe 4.0 x16 (32 + 32 GB/s)

GPU GPU

CPU

Figure 3: Perlmutter node diagram, based on machine
documentation [15]. Polaris shares a similar node
topology.

For BabelStream on non-accelerator systems, we choose
the highest single and multicore memory bandwidth from
the OpenMP configuration options described in Table 1 cho-
sen over all the possible BabelStream operations (i.e., Copy,
Mul, Add, Triad and Dot) for the largest vector size we ran
(which is at least 128 MB in every case). For BabelStream on
accelerator systems, we do not use OpenMP and thus pick
the best over all of the BabelStream operations for the largest
vector size we ran (1 GB for all accelerator systems). We note
that on the MI250X platforms, BabelStream only uses one of
the two Graphics Compute Dies (GCDs), which is why the
reported memory bandwidth is less than half of the notional
3276.8 GB/s advertised by AMD [9]. We declined to report
CPU memory bandwidth results on the accelerator systems
since in many applications, the CPU is used primarily for co-
ordinating device kernels and initiating MPI communication
and is not usually used in way in which the memory system
is heavily taxed.
For the OSU Micro-Benchmarks, on non-accelerator sys-

tems, we consider both on-socket and on-node communica-
tion as described in subsection 3.1. On accelerator systems,

Rank/Name Location CPU

29. Trinity LANL Intel Xeon Phi 7250
94. Theta ANL Intel Xeon Phi 7230
109. Sawtooth INL Intel Xeon Platinum 8268
127. Eagle NREL Intel Xeon Gold 6154
141. Manzano SNL Intel Xeon Platinum 8268

Table 2: USDOEnon-accelerator based supercomputers
in the top 150 of the June 2023 Top500. All data on this
table is taken from the Top 500 [17].

we consider host-to-host and device-to-device transfers, the
latter being broken down into several categories based on
the device-to-device interconnects, which are described in
more detail in Appendix A. On most of the accelerator sys-
tems, there is some amount of interconnect heterogeneity
between accelerators. Perlmutter and Polaris have the same
interconnect between all four GPUs. Sierra, Summit and
Lassen have two different classes of GPU interconnection
— one via NVLink and one via PCIe. These are separated as
classes “A” and “B” in the following chart. Frontier, RZVernal
and Tioga have different GPUs that are connected via four,
two or one infinity fabric links (denoted “A,” “B,” and “C”)
in the following charts, as well as GPUs that do not have a
direct connection (denoted “D”).

For Comm|Scope on accelerator systems, we estimate ker-
nel launch latency, empty queue wait latency, and data copy
costs. Kernel launch latency is measured by recording the
wall time that it takes to launch (not complete) empty, zero-
argument kernels. Empty queue wait latency measures the
wall time taken to complete a device synchronize call with an
empty work queue. Data copy cost measurements invoke and
complete an asynchronous memcopy between the source
and target devices. If the source is the host, the source buffer
is pinned. For data copies, we average the device-to-host and
host-do-device latencies and bandwidths and report those
together. Latency is measured using 128B transfers. Band-
width is measured using 1GB transfers. For device-to-device
latencies, we differentiate based on the type of interconnect
between the devices, as described in more detail in Appen-
dix A. Comm|Scope is built on the benchmark [10] support
library, which is responsible for determining how many op-
erations to average for each test. Like the other benchmarks,
100 such tests are aggregated to produce the reported mean
and standard deviation.

We begin with the non-accelerator based platforms, which
consist of five different Intel Xeon and Intel Xeon Phi based
machines. Results on BabelStream and the OSU microbench-
marks can be found in Table 4. The three traditional Xeon
CPU systems (Sawtooth, Eagle and Manzano) all have some-
what similar memory bandwidth for both a single core (13-16
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Rank/Name Location CPU Accelerator

1. Frontier ORNL AMD EPYC AMD MI250X
5. Summit ORNL IBM Power9 NVIDIA GV100
6. Sierra LLNL IBM Power9 NVIDIA GV100
8. Perlmutter1 NERSC AMD EPYC 7763 NVIDIA A100
19. Polaris ANL AMD EPYC 7532 NVIDIA A100
36. Lassen LLNL IBM Power9 NVIDIA V100
116. RZVernal LLNL AMD EPYC AMD MI250X
132. Tioga LLNL AMD EPYC AMD MI250X

Table 3: US DOE accelerator based supercomputers in
the top 150 of the June 2023 Top500, excepting Cori
and Frontier TDS. All data on this table is taken from
the Top 500 [17]. 1 A100s with 40GB HBM used.

GB/s) and all cores (200-250 GB/s) as well as sub-microsecond
MPI latencies both on-socket and on-node. For the Xeon Phi
systems, we see a substantial performance disparity between
Trinity and Theta, especially in the realm of MPI latency.
At the suggestion of Argonne staff, we tried the ALCF MPI
Benchmarks [8], as an alternative to the OSU microbench-
marks, and they reported a slightly lower MPI latency (sub-5
𝜇𝑠), but nowhere near as small as Trinity.

To the best of our knowledge, no precise theoretical mem-
ory bandwidth numbers for Knights Landing’s MCDRAM
have been published, though Intel claims > 450 GB/s [34];
the “Peak” bandwidth numbers for Trinity and Theta reflect
this. Trinity’s and Theta’s Knights Landing CPUs were con-
figured in “quad cache” mode, where the MCDRAM acts as
a system-managed cache for the DDR4 main memory. Over-
heads of managing the cache may contribute to lower “all”
bandwidth on Trinity, but do not adequately explain the sus-
piciously low measurement on Theta, which underperforms
the rest of the platforms substantially.
Now we consider the accelerator-based platforms. Here

we report BabelStream and OSU microbenchmark results in
Table 5 and Comm|Scope results in Table 6. We note that the
three NVIDIA V100 machines (Summit, Sierra and Lassen)
have a substantially lower device memory bandwidth than
the NVIDIA A100 machines (Perlmutter and Polaris) and the
AMD MI250X machines (Frontier, RZVernal and Tioga). The
latter two categories report fairly similar achieved memory
bandwidth (about 1.3 TB/s). 1536 Perlmutter nodes have
A100s with 40GB HBM memory, and 256 nodes have A100s
with 80GB - in this work, we only measure the 40 GB A100s
as those make up the majority of nodes in the machine.
Again, recall that BabelStream only uses one of the two

GCDs on the AMDMI250X GPU, so the overall bandwidth of
the GPUwould be roughly double what is reported if another
GPU stream were copying data at the same time. Host MPI
latencies are sub-microsecond on all accelerator machines,

which is consistent with results on the non-accelerator archi-
tectures. Device MPI latencies show a substantial difference
between the NVIDIA V100 machines (roughly 18-19 𝜇𝑠), the
NVIDIA A100 machines (10-14 𝜇𝑠) and the sub-microsecond
latencies we see on the AMD MI250X machines. We also
note that all GPUs appear to be roughly equidistant on the
MI250X machines, while the NVIDIA V100 platforms add
roughly 1𝜇𝑠 for the non-NVLink connections.
Kernel launch latencies exhibit a clear hierarchy of 4-5

𝜇𝑠 for the V100 machines and 1.5-2.15 𝜇𝑠 for the A100 and
MI250X machines, with the MI250X machines falling on
the high (RZVernal/Tioga) and low (Frontier) ends of that
range. Kernel wait latencies are 5-6 𝜇𝑠 for the V100 ma-
chines, roughly 1 𝜇𝑠 for the A100 machines and .1 − .2𝜇𝑠
for the MI250X machines. Host-to-device and device-to-host
latencies show a different trend, with the MI250X machines
measured at 12-13 𝜇𝑠 , the V100 machines next at 7-8 𝜇𝑠 , and
the A100 machines fastest at 4-6 𝜇𝑠 . For host-to-device and
device-to-host bandwidth, the V100 machines perform best,
reaching 40-60 GB/s due to NVLink interconnects between
the CPU and accelerators, while all other machines reach
roughly 25 GB/s over PCIe interconnects. Device to device
transfer latency is roughly 25 𝜇𝑠 via the NVLink connec-
tions on the V100 and about 2 𝜇𝑠 slower on the non-NVLink
connections. The two A100 machines (Perlmutter and Po-
laris) show a substantial difference (14 𝜇𝑠 vs. 32 𝜇𝑠) in their
device-to-device latency performance, with a small variation
based on which GPU pair is tested. These systems have the
same GPU SKU, the same number of GPUs per node, and
the same GPU-GPU interconnects, so it is possible that the
difference is explained by system software differences (e.g.,
CUDA driver version). The MI250X platforms exhibit a 10-12
𝜇𝑠 latency, with the quad infinity connections on RZVernal
and Tioga running a full 4 𝜇𝑠 faster than the similar pairs
on Frontier. Inter-device latency in Comm|Scope is substan-
tially slower than the inter-device latency shown by the OSU
microbenchmarks. This is likely due to the former’s use of
hipMemcpyAsync as a means of copying data, while the MPI
implementation likely uses remote memory access (RMA).
For accelerator platforms, we can summarize the results

of Table 5 and Table 6 by providing ranges for all of the mean
values reported in the tables. These results can be found in
Table 7. This table provides an easier means of digesting the
above results when one is primarily interested in comparing
how different accelerators perform, rather the comparing
different systems.

5 CONCLUSIONS AND FUTUREWORK
Despite extensive benchmarking of Top-500 class systems,
results are difficult to access, leading the HPC community
to have a fragmented and patchwork understanding of key
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Rank/Name Memory Bandwidth (𝐺𝐵/𝑠) MPI Latency (𝜇𝑠)

Single All Peak On-Socket On-Node

29. Trinity 12.36 ± 0.16 347.28 ± 5.76 > 450 [34] 0.67 ± 0.01 0.99 ± 0.01
94. Theta 18.76 ± 0.58 119.72 ± 0.54 > 450 [34] 5.95 ± 0.01 6.25 ± 0.05
109. Sawtooth 13.06 ± 0.35 238.70 ± 8.39 281.50 [13] 0.48 ± 0.01 0.48 ± 0.01
127. Eagle 13.45 ± 0.03 208.24 ± 0.92 255.97 [12] 0.17 ± 0.00 0.38 ± 0.01
141. Manzano 15.27 ± 0.05 234.86 ± 0.12 281.50 [13] 0.32 ± 0.00 0.56 ± 0.01

Table 4: Mean and standard deviation of observed memory bandwidth (𝐺𝐵/𝑠) and MPI latency (𝜇𝑠) for US DOE non-
accelerator supercomputers taken over 100 runs. Peak bandwidth refers to the theoretical maximum achievable.
On Xeon Phi systems, socket represents transfers between the first and second codes with node representing
transfers between the first and last cores.

Rank/Name Memory Bandwidth (𝐺𝐵/𝑠) MPI Latency (𝜇𝑠) MPI Latency (𝜇𝑠) Device-to-Device

Device Peak Host-to-Host A B C D

1. Frontier 1336.35 ± 1.11 1600 [4] 0.45 ± 0.01 0.44 ± 0.00 0.44 ± 0.00 0.44 ± 0.00 0.44 ± 0.00
5. Summit 786.43 ± 0.11 900 [1] 0.34 ± 0.07 18.10 ± 0.22 19.30 ± 0.15
6. Sierra 861.40 ± 0.65 900 [1] 0.38 ± 0.01 18.72 ± 0.12 19.76 ± 0.37
8. Perlmutter 1363.74 ± 0.23 1555.2 [3] 0.46 ± 0.06 13.50 ± 0.13
19. Polaris 1362.75 ± 0.17 1555.2 [3] 0.21 ± 0.00 10.42 ± 0.03
36. Lassen 861.03 ± 0.53 900 [1] 0.37 ± 0.00 18.68 ± 0.20 19.72 ± 0.13
116. RZVernal 1291.38 ± 0.77 1600 [4] 0.49 ± 0.00 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.00 0.49 ± 0.01
132. Tioga 1336.81 ± 0.97 1600 [4] 0.49 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.49 ± 0.01

Table 5: Mean and standard deviation of observed memory bandwidth (𝐺𝐵/𝑠) and MPI latency (𝜇𝑠) for US DOE
accelerator supercomputers taken over 100 runs. Peak refers to the theoretical maximum bandwidth. For Summit,
Sierra, and Lassen, A refers to GPUs directly connected by NVLinks, and B otherwise. For Frontier, RZVernal, and
Tioga, A, B, and C refer to quad-, dual-, and single infinity fabric links, while D refers to a GPU without a direct
connection.

Rank/Name Kernel (H→D + D→H)/2 D→D Latency

Launch Wait Latency Bandwidth A B C D

1. Frontier 1.51 ± 0.00 0.14 ± 0.00 12.91 ± 0.02 24.87 ± 0.01 12.02 ± 0.05 12.56 ± 0.03 12.68 ± 0.02 12.02 ± 0.10
5. Summit 4.84 ± 0.01 4.31 ± 0.01 7.82 ± 0.07 44.88 ± 0.00 24.97 ± 0.16 27.44 ± 0.14
6. Sierra 4.13 ± 0.01 5.59 ± 0.02 7.27 ± 0.23 63.40 ± 0.01 23.91 ± 0.16 27.70 ± 0.12
8. Perlmutter 1.77 ± 0.01 0.98 ± 0.00 4.24 ± 0.01 24.74 ± 0.00 14.74 ± 0.41
19. Polaris 1.83 ± 0.00 1.32 ± 0.01 5.33 ± 0.02 23.71 ± 0.00 32.84 ± 0.30
36. Lassen 4.56 ± 0.00 5.52 ± 0.01 7.76 ± 0.32 63.34 ± 0.02 24.56 ± 0.28 27.69 ± 0.10
116. RZVernal 2.16 ± 0.01 0.12 ± 0.00 12.20 ± 0.07 24.88 ± 0.00 9.85 ± 0.01 12.58 ± 0.00 12.45 ± 0.02 10.21 ± 0.01
132. Tioga 2.15 ± 0.01 0.12 ± 0.00 12.19 ± 0.04 24.88 ± 0.00 9.85 ± 0.02 12.59 ± 0.01 12.46 ± 0.01 10.12 ± 0.02

Table 6: Mean and standard deviation of observed kernel launch / wait latencies (𝜇𝑠) as well has memory transfer
latencies (𝜇𝑠) and bandwidths (𝐺𝐵/𝑠) for US DOE accelerator supercomputers taken over 100 runs. For Summit,
Sierra, and Lassen, A refers to GPUs directly connected by NVLinks, and B otherwise. For Frontier, RZVernal, and
Tioga, A, B, and C refer to quad-, dual-, and single infinity fabric links, while D refers to a GPU without a direct
connection.
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Accelerator Memory BW MPI Lat. Kernel Launch Kernel Wait H2D/D2H Lat. H2D/D2H BW D2D Lat.

V100 786.43–861.40 18.10–18.72 4.13–4.84 4.31–5.59 7.27–7.82 44.88–63.40 23.91–24.97
A100 1362.75–1363.74 10.42–13.50 1.77–1.83 0.98–1.32 4.24–5.33 23.71–24.74 14.74–32.84
MI250X 1291.38–1336.81 0.44–0.50 1.51–2.16 0.12–0.14 12.19–12.91 24.87–24.88 9.85–12.02

Table 7: Maximum and minimum of device bandwidth (𝐺𝐵/𝑠) device MPI latency (𝜇𝑠) kernel launch / wait latencies
(𝜇𝑠) as well has memory transfer latencies (𝜇𝑠) and bandwidths (𝐺𝐵/𝑠) across US DOE accelerator supercomputers.

performance parameters across a variety of systems. In an
effort to correct this issue, this paper presents intra-node
latency and bandwidth measurements for all fourteen active
U.S. Department of Energy systems above rank 150 in the
June 2023 Top 500 list. This paper is intended to be a first
reference for developers of performance-portable applica-
tion codes when they need information measured by these
benchmarks.
Four future areas of investigation are planned. First, we

plan to extend this work to include inter-node measure-
ments. The challenge is to develop a practical set of bench-
marks that provide actionable information regarding net-
work contention, node-vs-network capability (e.g. injection
bandwidth), network topology, MPI implementation, collec-
tive communication, and GPU-network integration without
becoming unwieldy. Second, the results in this paper will
quickly go out-of-date as new systems are built and old ones
are retired. We hope to refine our methodology and publish
updated benchmarks approximately once per year. Third,
the US DOE has a specific set of mission criteria that drive
its HPC procurements. Consequently, its systems may not
represent other interesting design points in the Top 500 list.
For instance, we did not report results from any AMD or
Arm CPU systems, because the US DOE does not have any
within the Top 150. Comparing results between Intel, AMD
and Arm CPU systems would be of interest in the future.
make We encourage anyone with an interest and access to a
substantially different system to contact us for collaboration
in a future publication of this nature. Fourth, prior work has
identified substantial latency differences on the same sys-
tems between MPI implementations [26]. On systems where
users are empowered to change MPI implementations, it may
be worth measuring under a variety of configurations.
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Rank/Name Compiler MPI

29. Trinity intel/2022.0.2 cray-mpich/7.7.20
94. Theta intel/19.1.0.166 cray-mpich/7.7.14
109. Sawtooth intel/19.0.5 intel-mpi/2019.0.117
127. Eagle gcc/8.4.0 openmpi/4.1.0
141. Manzano intel/16.0 openmpi/1.10

Table 8: Compilers and MPI versions on non-
accelerator US DOE machines.

• Sierra: A patch to BabelStream was needed, which
removed the -march=native and -forward-unknown-
to-host-compiler compiler options which are not sup-
ported by the compilers on Sierra.

• Lassen: A patch to BabelStream was needed, which
removed the -march=native and -forward-unknown-
to-host-compiler compiler options which are not sup-
ported by the compilers on Lassen.

• Theta:We could not get the libnuma support in Comm|
Scope to compile, so we built Comm|Scope without it.

B ARTIFACT DESCRIPTION
B.1 Artifact Identification
The contributions of the paper are results of latency and
bandwidth benchmarks for DOE systems in the upper tier
of the Top 500 List as of June 2023. The three benchmark
software packages and their provenance are given below:
(1) BabelStream (memory bandwidth) by University of

Bristol, obtained from
https://github.com/UoB-HPC/BabelStream

(2) OSU Microbenchmarks (MPI latency) by Ohio State
University, obtained from
http://mvapich.cse.ohio-state.edu/benchmarks/ (Not
made available by OSU as a public git code repository
/ Downloaded as tarball)

(3) Comm|Scope (GPU kernel and data transfer latency) by
IBM-Illinois Center for Cognitive Computing Systems
Research (C3SR), obtained from
https://github.com/c3sr/comm_scope

Because these benchmarks are publicly available, we ex-
pect that the results of the paper can be reasonably repro-
duced for similar systems with similar software environment
configurations.

B.2 Reproducibility of Experiments
To build BabelStream, we first cmake then make. We execute
the benchmark suite, sweeping the input size space from
16k to somewhere between 16M and 128M double precision
values, stepping by powers of two. On systems with GPUs,
we measure the GPU memory bandwidth. For 100 trials of

each test configuration, about one hour is required to com-
plete such GPU bandwidth measurements, depending on the
machine. On CPU only systems, we measure the CPU mem-
ory bandwidth, varying the OpenMP parameters as specified
in Table 1. For 100 trials of each test configuration, several
hours are required to complete such CPU bandwidth mea-
surements, depending on the machine. BabelStream results
for the highest performing benchmark within the suite in
each instance are reported under "Memory Bandwidth" in
Tables 4, 5, and 7.

To build the OSU Microbenchmarks, we first configure
then make. We execute the point-to-point MPI latency test.
On systems with GPUs, we measure latency between pairs
of GPUs and between pairs of CPUs. On systems with more
than one CPU socket, we conduct one set of experiments
between two processes on the same socket and one set be-
tween two processes on different sockets. On systems with a
single KNL, we conduct experiments between two processes
on the first two cores and also between the first and last
cores. For 100 trials of each test configuration, 1-2 hours
are required, depending on the machine. OSU point-to-point
latency results are reported as "MPI Latency" in Tables 4, 5,
and 7.
To build Comm|Scope: we first cmake then make. On sys-

tems with NVIDIA GPUs, we execute the Comm_cudaMem-
cpyAsync_GPUToGPU, Comm_cudaMemcpyAsync_Pinned-
ToGPU, Comm_cudaMemcpyAsync_GPUToPinned, Comm_-
cudaDeviceSynchronize, and Comm_cudart_kernel tests. On
systems with AMD GPUs, we execute the Comm_hipMem-
cpyAsync_GPUToGPU, Comm_hipMemcpyAsync_Pinned-
ToGPU, Comm_hipMemcpyAsync_GPUToPinned, Comm_-
hipDeviceSynchronize, and Comm_hip_kernel tests. On CPU
only systems, Comm|Scope is not used. For 100 trials of each
test configuration, 1-2 hours are required, depending on the
machine. Comm|Scope results are reported in Table 6 and
the last five columns of Table 7.
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Rank/Name Compiler Device Library MPI

1. Frontier amd-mixed/5.3.0 amd-mixed/5.3.0 cray-mpich/8.1.23
5. Summit xl/16.1.1-10 cuda/11.0.3 spectrum-mpi/10.4.0.3-20210112
6. Sierra gcc/8.3.1 cuda/10.1.243 spectrum-mpi/rolling-release
8. Perlmutter gcc/11.2.0 cuda/11.7 cray-mpich/8.1.25
19. Polaris nvhpc/21.9 cuda/11.4 cray-mpich/8.1.16
36. Lassen gcc/7.3.1 cuda/10.1.243 spectrum-mpi/rolling-release
116. RZvernal amd/5.6.0 amd/5.6.0 cray-mpich/8.1.26
132. Tioga amd/5.6.0 amd/5.6.0 cray-mpich/8.1.26

Table 9: Compilers, device libraries and MPI versions on accelerator US DOE machines.
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