
How ISO C became unusable for operating systems
development

Victor Yodaiken
vy@e27182.com

E27182
Austin, Texas, USA

Figure 1. Ken Thompson and Dennis Ritchie at Bell Labs

Abstract
The C programming language was developed in the 1970s
as a fairly unconventional systems and operating systems
development tool, but has, through the course of the ISO
Standards process, added many attributes of more conven-
tional programming languages and become less suitable for
operating systems development. Operating system program-
ming continues to be done in non-ISO dialects of C. The
differences provide a glimpse of operating system require-
ments for programming languages.

Keywords: operating systems, programming languages, C,
UNIX, ISO-C, compiler
ACM Reference Format:
Victor Yodaiken. 2021. How ISO C became unusable for operating
systems development. In 11th Workshop on Programming Languages
and Operating Systems (PLOS ’21), October 25, 2021, Virtual Event,

PLOS ’21, October 25, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
11thWorkshop on Programming Languages and Operating Systems (PLOS ’21),
October 25, 2021, Virtual Event, Germany, https://doi.org/10.1145/3477113.
3487274.

Germany. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3477113.3487274

1 Introduction
The C programming language [33] is the first, and, so far,
only widely successful programming language that provides
operating system developers with a high-level language al-
ternative to assembler (compare to [42]). C’s success was
predicated on its design: a small language, close to the ma-
chine yet with a great deal of flexibility for experienced
programmers. The Rationale for the C standard [9] cited C’s
capability to function as a "high-level assembler" and ex-
plained that "many operations are defined to be how the target
machine’s hardware does it rather than by a general abstract
rule" but C also has traditional attributes of an ALGOL style
programming language.

At present most major commercial operating system ker-
nels and many experimental ones are written primarily in C
or some dialect. However, ISO C [8, 26], the language that
has evolved over nearly forty years of the standards pro-
cess, has not only diverged from Kernighan and Ritchie C
(K&R C) [13], but has become poorly suited to operating sys-
tems development. C based operating systems projects on
ISO C-compliant compilers [27, 28] rely on compiler specific
opt-outs, assembler escapes, and coding tricks to produce a

ar
X

iv
:2

20
1.

07
84

5v
1

 [
cs

.O
S]

 1
9

Ja
n

20
22

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3477113.3487274
https://doi.org/10.1145/3477113.3487274
https://doi.org/10.1145/3477113.3487274
https://doi.org/10.1145/3477113.3487274

PLOS ’21, October 25, 2021, Virtual Event, Germany Yodaiken

usable C dialect, largely undermining the purpose of an ISO
standard. Among the techniques used in Linux are multiple
gcc-specific opt-outs ([40] fig. 9) and "opaque" operations
such as in-line assembler code that hides some pointer addi-
tion for per-CPU data structures [36]. These techniques are
not necessarily stable or reliable as the compilers evolve and
change C semantics.
A common argument (made e.g. by Dietz [1]) is that pro-

grammers are wrong: their objections to changes in C se-
mantics embody "a fundamental and pervasive misunder-
standing: the compiler [is] not ’reinterpreting’ the semantics
but rather [is] beginning to take advantage of leeway explic-
itly provided by the C standard." However, that overlooks
the rationale’s claimed intention to continue supporting the
high-level assembler use case.

Limitations of ISO C for OS development have been noted
in academic literature

"Systems or library C codes often cannot be written
in standard-conformant C" [20].

and by practitioners e.g. [38]. The primary cause is a de-
sign approach in the ISO standard that has given priority to
certain kinds of optimization over both correctness and the
"high-level assembler" [9] intentions of C, even while the
latter remain enshrined in the rationale.
For example, a well-known security issue in the Linux

kernel was produced by a compiler incorrectly assuming a
pointer null check was unnecessary ([40] fig. 6) and deleting
it as an optimization. Or consider this (simplified) patch
report for Linux [25]:

The test [for termination] in this loop: [...] was
getting completely compiled out by my gcc, 7.0.0
20160520. The result was that the loop was going
beyond the end of the [...] array and giving me
a page fault [...]
I strongly suspect it’s because __start_fw and
__end_fw are both declared as (separate) arrays,
and so gcc concludes that __start_fw can never
point to __end_fw.
By changing these variables from arrays to point-
ers, gcc can no longer assume that these are sep-
arate arrays.

Here, gcc is "optimizing" based on the assumption that one ex-
ternally defined object cannot overlap another, even though
the host platform allows this.
ISO delegates to the compiler a great deal of the control

that K&R C divides between the programmer, the environ-
ment, and the target architecture but not the compiler, as
witnessed by the rationale’s reference to “how the target
machine does it”. Consider a simple scalar read *x = y. In
K&R C, a programmer could be reasonably certain that code
would be generated to copy a value from the storage starting
at the location of y to the location with address x, something
like load x,Reg1; load (y),Reg2; store Reg2,(Reg1)

or perhaps simpler if some values are already cached in reg-
isters. In ISO C, things are complicated. The compiler might
generate no code at all, if, for example it detects the address
in x to be aliasing a storage location that is used elsewhere
with a different enough type. Or the compiler might con-
clude that y is uninitialized and generate code to copy some
arbitrary value to *x on the assumption that any arbitrary
value will do, perhaps a different one on each access. The
compiler is often free to reorder statements if it detects or
assumes they do not have data dependencies.
For an example of an implementation of malloc in K&R

(page 187) the text explains there is a question about whether
"pointers to different blocks ... can be meaningfully com-
pared", something not guaranteed by the standard. The con-
clusion is "this version of malloc is portable only among
machines for which general pointer comparison is meaning-
ful." – delegating the semantics to the processor architecture.
There is no suggestion that the code is invalid. In contrast,
consider the much higher-level, compiler-controlled view of
comparing pointer equality in [5] (my bold).

A priori, pointer equality comparison (with ==
or !=) might be expected to just compare their
numeric addresses, but we observe gcc 8.1 -O2
sometimes regarding two pointers with the same
address but different provenance as nonequal.
Unsurprisingly, this happens in some circum-
stances but not others, e.g. if the test is pulled
into a simple separate function, but not if in
a separate compilation unit. To be conserva-
tive w.r.t. current compiler behaviour, pointer
equality in the semantics should give false if the
addresses are not equal, but nondeterministi-
cally (at each run-time occurrence) either take
provenance into account or not if the addresses
are equal – this specification looseness accom-
modating implementation variation.

The ISO approach of delegating to the compiler, not the
machine, has damaging effects on reliability and expressive
range for OS programming. The next two sections discuss
further examples of this. Since compiler optimizations are
the reason behind this approach, the final section discusses
reasons for skepticism about whether this is necessary or
helpful in this specific domain. Whether these kinds of op-
timizations are necessary for other types of applications is
not within scope.

Related Work and Scope. There have been a number of
articles and essays on the controversial "undefined behavior"
mechanism employed to enable many ISO C optimizations (
e.g., [2, 15, 30, 40, 41]): the effects on operating system pro-
gramming are discussed in section 3. The complexity of ISOC
semantics has also motivated development of formalizations
intended to be easier to reason about, more precisely spec-
ified, or more useful for low-level programming [6, 11, 20]

How ISO C became unusable for operating systems development PLOS ’21, October 25, 2021, Virtual Event, Germany

and extensions to compiler intermediate languages e.g. Lee
[17]. These are clearly related works, as discussed below,
but they assume exactly what is being questioned here: the
utility of the optimization approach of ISO C. The CompCert
compiler [18] is discussed in the final section.

2 Optimization and time bombs
Dennis Ritchie [32] wrote the following as part of an objec-
tion to one of the first ANSI C standard drafts:

The fundamental problem is that it is not possi-
ble to write real programs using the X3J11 defi-
nition of C. The committee has created an unreal
language that no one can or will actually use.

Ritchie’s main objection was to a type attribute intended
to limit aliasing (two or more active pointers/references ad-
dressing the same storage).

the committee is planting timebombs that are
sure to explode in people’s faces. Assigning an
ordinary pointer to a pointer to a ‘noalias’ ob-
ject is a license for the compiler to undertake
aggressive optimizations that are completely le-
gal by the committee’s rules, but make hash of
apparently safe programs.

C’s pointer system can be a problem for optimizing compilers.
Even for something as apparently innocent as
for(i=0; i < *b; i++)a[i] = a[i]+ *v;

if it is possible that for some i, a+i == v or a+i == b or even
a+i = &v so compiled code must reload both values on each
iteration of the loop1. In theory, the more the compiler can
restrict aliasing, the more it can optimize. Stronger alias rules
should permit more common subexpression elimination and
redundancy elimination. Ritchie was dubious:

Perhaps there is some reason to provide a mech-
anism for asserting, in a particular patch of code,
that the compiler is free to make optimistic as-
sumptions about the kinds of aliasing that can
occur. I don’t know any acceptable way of chang-
ing the language specification to express the pos-
sibility of this kind of optimization, and I don’t
know how much performance improvement is
likely to result.

The ANSI Committee, soon to become the ISO Committee,
backed down in the face of Ritchie’s objections — temporar-
ily. A year later, C89 imposed type restrictions on access to
C objects as a way of facilitating type-based alias analysis
(TBAA) (section 3.3 in C89). The basic idea is that ISO C for-
bade accessing an object of one type via a pointer (or other
"left hand side") of a different enough type, with an exception
for character pointers which can access everything (sort of –
as discussed below).

1Here I am treating pointer equality in terms of machine addresses.

The usual example of TBAA optimization involves "lifting"
variables out of loops. For the loop above

long b1 = *b; long v1 = *v; //lifted
for(int i= 0; i < b1; i++)a[i]= a[i]+v1);

is a legal optimization if the type of a[i] doesn’t match the
types of *b and *v because the compiler "knows" that those
pointers cannot alias objects of a different type.
The standard does not require compilers to flag aliasing

violations or to prove the absence of aliasing. Instead the ISO
standard permits compilers to assume an absence of aliasing
in a number of cases including cases where there would
otherwise be type violations. Consider the following code
fragment [44] where a floating point value is set to −3.14
and then an aliasing unsigned int pointer is used to turn
off the sign bit. With no optimization, under Clang 12.01,
this program prints 3.14. With optimization level 2, it prints
−3.14 because, assuming the pointer cannot alias the floating
point variable, the compiler discards the mask operation as
an optimization.

float f; long *l = (long *)&f;
f= -3.14;
//forbidden aliasing
*l &= 0x7fffffff;
printf("f = %f \n", f); return;

Since the assumption that there is no aliasing is false in this
case, a programming type error is silently "optimized" to a
logic error.

Under these rules, radix sort is only permitted for elements
that have byte-sized radixes.

2.1 Effects on Operating System development
For operating systems the effects are widespread particu-
larly for objects that have different semantics depending on
which kernel component is accessing them. A single block
of storage may be addressed by the disk manager as a block
of unsigned characters, by the file manager as an array of
inodes, a directory block, or a block of characters, and by a
page manager via a void pointer, all at the same time. The
aliasing rules of ISO C are not compatible with this approach.
It may be possible in ISO C to push all these different types
into a union, but that would harm modularity, by requiring
each of the components to share the basic data structures of
the others.
As another example, computing a checksum for a data

structure by aliasing it with an int pointer is not permitted.

packet_t * p = getpacket();
int ck=0;
int i;
int *q = (int *)p; //cast is ok
for(i= 0; i< sizeof(packet_t)/sizeof(int); i++)

ck ^= q[i]; //not permitted

PLOS ’21, October 25, 2021, Virtual Event, Germany Yodaiken

There is no general escape mechanism, even though char
pointers are allowed to alias anything2. The absence of es-
capes is amajor change in C’s type system as Brian Kernighan’s
critique of Pascal makes clear [12]:

There is no way [in Pascal] to override the type
mechanism when necessary, nothing analogous
to the “cast” mechanism in C. This means that
it is not possible to write programs like storage
allocators or I/O systems in Pascal, because there
is no way to talk about the type of object that they
return, and no way to force such objects into an
arbitrary type for another use.

As we saw earlier, the implementation of malloc/free in
K&R is not conformant ISO C code. ISO C needs special rules
around “effective types” (explored later) in order to permit
malloc/free to work. Even then, it remains unclear how to
write these functions in conformant ISO C.

Perhaps the most important effect is the loss of semantic
clarity. Programmers are basically mystified by the rules:
see "The Strict Aliasing Situation is Pretty Bad" [31] (the
comments are especially illuminating). Thirty years after the
aliasing type restrictions went into the Standard, a committee
of standards experts wrote that the current situation "leaves
many specific questions unclear: it is ambiguous whether
some programming idioms are allowed or not, and exactly
what compiler alias analysis and optimisation are allowed
to do." [5].
In practice, alias analysis in gcc and Clang has unpre-

dictable effects. Gcc does not omit the mask operation in
the floating point example above although it does do typed
alias optimizations sometimes (see Figure 7 in [40] for an ex-
ample). Linux uses a flag to disable "strict-aliasing" analysis
in gcc [37, 38] but that does not disable all alias optimiza-
tions as shown by an example in [5] (page 15). And because
aliasing violations may not be flagged, there can be silent,
surprising, changes in code operation between optimization
levels or versions. This is not a C-specific problem. Fortran
has similar problems with similar assumptions: "anything
may happen: the program may appear to run normally, or
produce incorrect answers, or behave unpredictably." [24].
Violation of aliasing rules is just one example of a large

class of "undefined behaviors" and the next section looks at
that topic more generally.

3 Undefined behavior and land mines
Neither K&R2 nor [33] mentions "undefined behavior", but
it is a central if controversial concept in ISO C. Good sum-
maries can be found in [2, 6, 15, 30, 40]. As described in the
C "Rationale" [9], undefined behavior is a modest concept:

2There is a Clang-specific "may_alias" attribute and memcpy is sometimes
suggested as a work-around but it introduces semantically confusing addi-
tional copying of data with hope that the optimizer may be able to do what
the programmer could not do directly.

Undefined behavior gives the implementor li-
cense not to catch certain program errors that
are difficult to diagnose. It also identifies areas
of possible conforming language extension: the
implementor may augment the language by pro-
viding a definition of the officially undefined
behavior.

This is a relatively simple, maybe deceptively simple, idea
that could be interpreted, for example, as permitting a C
implementation to use single machine instructions for basic
arithmetic operations and let the hardware handle (or ig-
nore) arithmetic overflow. The C standard has long declared
signed integer overflow to be undefined behavior and this
interpretation would permit the wrapping behavior native to
most modern processors, the saturating arithmetic of some
controllers, or the more widely varied behaviors of histori-
cal processors – all implemented efficiently by adopting the
target processor-native semantics. This modest view of un-
defined behavior is not, however, the prevailing one, which
is that the compiler can assume undefined behavior is im-
possible and can optimize on the basis of that assumption. In
fact, it is currently argued that the standard interpretation
allows implementations to take any action at all, not just for
(say) an overflowing execution but for the entire program, if
they detect a single feasible instance of undefined behavior.
And there are lots of undefined behaviors.

By C18, the ISO C Standard document included a 10-page,
incomplete list of undefined behaviors covering everything
from type constraints to syntax errors and synchronization
errors. Most C programs contain undefined behavior – cer-
tainly every operating system code base does. Perhaps more
troubling, as [2] points out, this concept of undefined behav-
ior makes C compilers unstable. A programmer may take
a particular property of a C compiler for some undefined
behavior to be a conforming language extension, but it may
actually just be undefined behavior that has not yet been
optimized. For example, gcc will generally ignore type rules
on pointers - except when it does not - so that *p = k may
work at one level of optimization, perhaps for decades, but
be deleted silently when the optimizer pass recognizes a type
mismatch. Kang [11] notes the "somewhat controversial prac-
tice of sophisticated C compilers reasoning backwards from
instances of undefined behavior to conclude that, for exam-
ple, certain code paths must be dead." can lead to "surprising
non-local changes in program behavior and difficult-to-find
bugs".
And by 2011, Chris Lattner, the main architect of the

Clang/LLVM compilers was echoing Ritchie’s warning [16]:

To me, this is deeply dissatisfying, partially be-
cause the compiler inevitably ends up getting
blamed, but also because it means that huge bod-
ies of C code are land mines just waiting to ex-
plode. This is even worse because [...] there is

How ISO C became unusable for operating systems development PLOS ’21, October 25, 2021, Virtual Event, Germany

no good way to determine whether a large scale
application is free of undefined behavior, and
thus not susceptible to breaking in the future.

There is a proposal [35] in front of the ISO C Standards
committee (WG14) to curtail undefined behavior semantics,
but it is controversial.

3.1 Arithmetic Overflow
An example of how undefined behavior works in practice
for arithmetic overflow was explained by Lattner [15].

knowing that INT_MAX+1 is undefined allows
optimizing X+1 > X to “true”. Knowing the mul-
tiplication “cannot” overflow (because doing so
would be undefined) allows optimizing X*2/2 to
X.

C "ints" are fixed-size sequences of bytes interpreted as 2s
complement values that map into the ring Z/2𝑘Z where (𝑥 ∗
𝑦)/𝑦 = 𝑥 is not a theorem3.Gcc x86-64 with the optimizer on
will reveal that (see the code and compilation [43]) if 𝑥 is an
"int" and 𝑥 = 1, 000, 000, 000 then calculating (𝑥∗5)/5 directly
produces 1, 000, 000, 000 but also 𝑧 = 𝑥 ∗ 5 = 705032704 and
then 𝑧/5 = 141006540. The result depends on whether the
compiler can recognize the overflows. Paradoxical results
are easy to generate.
Operating system programmers in Linux discovered this

issue around 2007 when they found C code of the form
𝑖 𝑓 (𝑖𝑛𝑑𝑒𝑥 +𝑙𝑒𝑛𝑔𝑡ℎ < 𝑖𝑛𝑑𝑒𝑥){...} was being silently deleted by
the compiler (since it has to be false axiomatically), causing
security and logical failures [4]. Eventually, the operating
system (and other projects such as the Postgres database)
resorted to a compiler-specific flag to force "wrapping se-
mantics" outside of ISO C. The same interpretation justifies
"optimizing"

while (i++ >= i) { adjust_valve(); };
if(pressure_too_high())emergency();

into an infinite loop that never gets to the "if" statement.
There are many complex interactions between the "can’t

happen" interpretation of undefined behavior and C’s rules
for arithmetic and variable promotion. For example, modular
arithmetic is required for unsigned arithmetic, but if "x"
and "y" are unsigned short, and "z" is unsigned int, then
the expression "z = x*y" can sometimes trigger undefined
behavior. C "promotes" the two variables on the right to type
"int" in order to not lose precision, but then signed integer
arithmetic "can’t overflow" and the compiler may sometimes
assume, incorrectly, the result is less than INT_MAX [34];

3.2 What is lost
Choosing to maximise freedom for the compiler, while still
specifying the language in a precise way, tends to increase

3Taking both 𝑥 ≤ 𝐼𝑁𝑇 _𝑀𝐴𝑋 and 𝑥 + 1 > 𝑥 as axioms implies that
𝐼𝑁𝑇 _𝑀𝐴𝑋 > 𝐼𝑁𝑇 _𝑀𝐴𝑋 .

the burden of complexity shared by implementors and users.
Consider these optimization-related issues.

3.2.1 Pointer casts. According to the text of the C18 ISO
C standard, pointers of most types can be freely cast to other
pointer types (section 6.3.2.3 paragraph 7).

A pointer to an object type may be converted to
a pointer to a different object type. If the result-
ing pointer is not correctly aligned 69) for the
referenced type, the behavior is undefined.

However, complex rules govern what accesses are permitted
via such pointers. The pointer is correctly aligned in this
code:

float *f = malloc(sizeof(float));
*f = 3.14; //1
int *a = (int *)f
*a = 4; //2

The language in section 6.5 paragraph 6 then implies that
the "effective type" of an allocated object can be changed by
writing to it:

If a value is stored into an object having no de-
clared type through an lvalue having a type that
is not a character type, then the type of the lvalue
becomes the effective type of the object for that
access and for subsequent accesses that do not
modify the stored value.

So have we converted the object pointed to by f to an int in
statement 2? Section 6.5 paragraph 7 says " An object shall
have its stored value accessed only by an lvalue expression
that has one of the following types", which are limited to com-
patible types and character types. We can convert f to be a
pointer to an int, which is even correctly aligned, but "access"
includes both reads and writes. The assignment of statement
2 is (currently) compiled as written by both gcc and Clang,
although the similar floating-point example above omits
the assignment to the aliasing pointer. The rules here were
substantially revised for C99, but are still not considered ad-
equate (e.g. even by many in WG14’s Memory Object Model
study group). In C89 this same section allows access only by
lvalues that have compatible declared types, which appears
to prevent any access at all to allocated objects coming from
malloc, so statement 1 would be undefined behavior in C89
– apparently an error in the specification. Derek Jones [10]
points out other changes in the C99 standard were required
to allow memcpy to be written in C, following mistakes in
C89 that prevented this.

Related issues include the behaviour of freed pointers [22],
comparison of ‘one-past-the-end’ pointers [23], and seman-
tics of integer-to-pointer casts [11]. The latter proposes a
‘quasi-concrete’ semantics, where casting a pointer to an
integer limits the permitted optimizations. This restraint is
relatively rare – it is unclear whether its compromise will

PLOS ’21, October 25, 2021, Virtual Event, Germany Yodaiken

be acceptable to ISO – yet still misses some cases where
addresses may be validly known to the wider program.

3.2.2 Temporally unbounded UB. The WG14 Memory
Object Model study group was started in order to come up
with a proposal for memory and pointer semantics. Their
working proposal [5] is quoted twice above, but also explains:

For evaluation-order and concurrency nondeter-
minism, one would normally say that if there
exists any execution that flags UB, then the pro-
gram as a whole has UB (for the moment ig-
noring UB that occurs only on some paths fol-
lowing I/O input, which is another important
question that the current ISO text does not ad-
dress). This view of UB seems to be unfortunate
but inescapable. If one looks just at a single exe-
cution, then (at least between input points) we
cannot temporally bound the effects of an UB,
because compilers can and do re-order code w.r.t.
the C abstract machine’s sequencing of computa-
tion. In other words, UB may be flagged at some
specific point in an abstract-machine trace, but
its consequences on the observed implementa-
tion behaviour might happen much earlier (in
practice, perhaps not very much earlier, but we
do not have any good way of bounding how
much). But then if one execution might have UB,
and hence exhibit (in an implementation) arbi-
trary observable behaviour, then anything the
standard might say about any other execution
is irrelevant, because it can always be masked
by that arbitrary observable behaviour.

Perhaps the unifying theme of both of these topics can be
found in Dennis Ritchie’s comment on noalias cited above:"
I don’t know any acceptable way of changing the language
specification to express the possibility of this kind of optimiza-
tion". C is stubbornly low-level and changing the language
specification to permit these types of optimizations is hard,
or maybe impossible. Current proposals introduce highly
complex rules, which despite their complexity are known
to be inadequate for certain systems programming idioms.
If accepted by ISO, they are likely to be misunderstood by
both practitioners and implementors, perpetuating rather
than solving the problem. As one possible solution, Torvalds
[39] and Ertl [3] both propose relatively concrete, opera-
tional alternatives – where compilers map source operations
to well-defined instruction sequences, in either a virtual or
real machine, from which compiler optimisations may not
observably stray.

4 What is gained
The second part of Ritchie’s comment cited above is "and I
don’t know how much performance improvement is likely to
result." It is difficult to find any documentation of significant

performance advantages of any kind of undefined behavior
optimization [2]. The standard TBAA lifting example can
be better and more generally optimized by hand without
much effort – without needing a type mismatch. Wang et al (
[40], Sec. 3.3) could not find a case where a UB optimization
could not be matched with simple coding changes. Other
optimizations are also mostly justified by small differences
in SPEC benchmarks or references to proprietary data sets.

Lee [17] provides an example of the claimed advantage of
undefined behavior for overflow.

for(int i=0 ; i <= N; i++)a[i] = x+1;

If 𝑖 and 𝑁 are both 32bit and the target machine is x86-64, it
is sometimes assumed that permitting overflow requires a
sign extend of i on each iteration.
.L3: movsx rcx, eax #64 bit sign extend i

add eax, 1
mov DWORD PTR [rsi+rcx*4], edx
cmp edi, eax
jge .L3

Assuming overflow is impossible allows omitting the sign
extend. Sign extension is a fast operation so if the loop is
non-trivial, the cost will be lost in the noise. In any case,
i can only overflow when N == INT_MAX. The code then
executes an infinite loop, writing x+1 from 𝑎[𝐼𝑁𝑇_𝑀𝐼𝑁] to
𝑎[𝐼𝑁𝑇_𝑀𝐴𝑋]. Gcc will omit the sign extend all the same, if
the programmer replaces <= with <. In sum, the "slowdown"
is caused by a single case that is nearly certainly an error
and easily avoided. As with many other similar cases, this
example of ISO C optimizations turns out to to depend on
the assumption that C programmers will not profile and
optimize their own code.

Even for aliasing-based optimizations, it is not necessary
for alias analysis to depend on undefined behavior. Alias
detection in the abstract is not Turing computable [29] and C
pointers make approximate alias detection difficult [14], but
there are effective algorithms that can detect most aliasing
[7] and it is a design choice tomake aliasing optimization rely
on assumptions about program code that are not validated.
ISO C has chosen to reduce the burden on the compilers at
the expense of semantic clarity.

The CompCert compiler is aimed at control systems that
have many of the same properties as operating systems, does
not do any undefined behavior based optimization4 (and
does not optimize extensively) [19] and has a deterministic
semantics [18]:

The semantics is deterministic and makes pre-
cise a number of behaviors left unspecified or
undefined in the ISO C standard [...]
CompCert generates code that ismore than twice
as fast as that generated by gccwithout optimiza-
tions, and competitive with gcc at optimization

4Except for assuming objects do not overlap in memory.

How ISO C became unusable for operating systems development PLOS ’21, October 25, 2021, Virtual Event, Germany

levels 1 and 2. On average, CompCert code is
only 7% slower than gcc -O1 and 12% slower
than gcc -O2.

Finally, there is an experiment done at RedHat by Vladimir
Makarov [21]:

I did an experiment by switching on only a fast
and simple RA and combiner in gcc. There are
no options to do this, I needed to modify gcc. [..]
Compared to hundreds of optimizations in gcc-
9.0 with -O2, these two optimizations achieve
almost 80% performance on an Intel i7-9700K
machine under Fedora Core 29 for real-world
programs through SpecCPU, one of the most
credible compiler benchmarks.

Makarov then tested a 20 year old version of gcc on Spec
benchmarks versus a contemporary version of the compiler
to show a 16% improvement with all optimizations enabled
— over a period where most UB based optimizations went
into the compilers.

A small performance improvement will generally not jus-
tify a decrease in code stability for operating systems or
avionics controllers, but the answer may be different for
"at-scale" data center applications or large numerical simula-
tions.

A Acknowledgments
The perceptive comments and suggestions of the PLOS re-
viewers and paper shepherd, Stephen Kell, gratefully ac-
knowledged. Thanks to John Regehr, Eskil Steenberg, An-
ton Ertl, Paul E. McKenney, Rich Felker, and members of
SC22/WG14 and the Memory Object Model discussion group
for education, discussion, and disagreements. I am responsi-
ble for any errors.

References
[1] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understand-

ing Integer Overflow in C/C++. Proceedings - International Conference
on Software Engineering 25 (07 2012). https://doi.org/10.1109/ICSE.
2012.6227142

[2] M. Anton Ertl. 2015. What every compiler writer should know about
programmers. In 18. Kolloquium Programmiersprachen und Grundlagen
der Programmierung (KPS’15), Jens Knoop and M. Anton Ertl (Eds.).
112–133. http://www.complang.tuwien.ac.at/kps2015/proceedings/
KPS_2015_submission_29.pdf

[3] M. Anton Ertl. 2017. The Intended Meaning of Undefined Behaviour in
C Programs. In 19. Kolloquium Programmiersprachen und Grundlagen
der Programmierung (KPS’17), Wolfram Amme and Thomas Heinze
(Eds.). 20–28. http://www.complang.tuwien.ac.at/papers/ertl17kps.
pdf

[4] Felix-gcc. 2007. Bug 30475 - assert(int+100 > int) optimized away.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475

[5] Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, and
Martin Uecker. 2021. A Provenance-aware Memory Object Model for
C. Draft Technical Specification N2577. http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2577.pdf

[6] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. 2015. Defining the
Undefinedness of C. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (Portland,
OR, USA) (PLDI ’15). Association for Computing Machinery, New York,
NY, USA, 336–345. https://doi.org/10.1145/2737924.2737979

[7] M. Hind and Anthony Pioli. 2000. Which pointer analysis should I
use?. In ISSTA ’00.

[8] ISO PL22.11 - SC22/WG14 . 2018. Programming language: C: ISO/IEC
9899:2018 (C18). Number ISO/IEC 9899:2018).

[9] INCITS J11 and SC22WG14. 2003. Rationale for International Standard.
Programming Languages. C Revision 5.10. http://www.open-std.org/
jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

[10] Derek Jones. 2017. How indeterminate is an indeterminate
value. http://shape-of-code.coding-guidelines.com/2017/06/18/how-
indeterminate-is-an-indeterminate-value/

[11] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, and Viktor Vafeiadis. 2015. A Formal C Memory
Model Supporting Integer-Pointer Casts. SIGPLAN Not. 50, 6 (June
2015), 326–335. https://doi.org/10.1145/2813885.2738005

[12] Brian W. Kernighan. [n.d.]. Why Pascal is Not My Favorite Program-
ming Language. http://www.lysator.liu.se/c/bwk-on-pascal.html

[13] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming
Language (2nd ed.). Prentice Hall Professional Technical Reference.

[14] W. Landi and B. Ryder. 1992. A safe approximate algorithm for inter-
procedural aliasing. In PLDI ’92.

[15] Chris Lattner. 2011. What every C programmer should
know. http://blog.llvm.org/2011/05/what-every-c-programmer-
should-know.html

[16] Chris Lattner. 2011. What Every C Programmer Should Know About
Undefined Behavior 2/3. https://blog.llvm.org/2011/05/what-every-c-
programmer-should-know_14.html

[17] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy
Das, David Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming
Undefined Behavior in LLVM. SIGPLAN Not. 52, 6 (June 2017), 633–647.
https://doi.org/10.1145/3140587.3062343

[18] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. http://xavierleroy.org/publi/compcert-
CACM.pdf

[19] Xavier Leroy. 2021. Personal Communication.
[20] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart.

2012. The CompCert Memory Model, Version 2. Research Report RR-
7987. INRIA. 26 pages. https://hal.inria.fr/hal-00703441

[21] Vladimir Makarov. 2020. MIR: A lightweight JIT compiler
project. https://developers.redhat.com/blog/2020/01/20/mir-a-
lightweight-jit-compiler-project

[22] Paul E. McKenney, Maged Michael, Jens Mauer, Peter Sewell, Martin
Uecker, Hans Boehm, Hubert Tong, and Niall Douglas. 2019. Pointer
lifetime-end zap. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2019/p1726r0.pdf

[23] Joseph Myers. 2014. "Bug 61502: comparison on "one-past" pointer
gives wrong result, comment 1". https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=61502

[24] Thi Viet Nga Nguyen and François Irigoin. 2003. Alias verification for
Fortran code optimization. J. UCS 9, 3 (2003), 270.

[25] Vegard Nossum. 2016. "Subject [PATCH] firmware: declare
__start,end_builtin_fw as pointers". https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=61502

[26] X3J11 Technical Committee on the C Programming Language. 1989.
ANSI X3.159, 1989 Edition, 1989 - INFORMATION SYSTEMS - PRO-
GRAMMING LANGUAGE - C.

[27] Clang Project. 2021. Clang 13 Documentation. https://clang.llvm.org/
docs/UsersManual.html

[28] GNU Project. 2021. GCC Documentation. https://gcc.gnu.org/
onlinedocs/

https://doi.org/10.1109/ICSE.2012.6227142
https://doi.org/10.1109/ICSE.2012.6227142
http://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_29.pdf
http://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_29.pdf
http://www.complang.tuwien.ac.at/papers/ertl17kps.pdf
http://www.complang.tuwien.ac.at/papers/ertl17kps.pdf
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2577.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2577.pdf
https://doi.org/10.1145/2737924.2737979
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://shape-of-code.coding-guidelines.com/2017/06/18/how-indeterminate-is-an-indeterminate-value/
http://shape-of-code.coding-guidelines.com/2017/06/18/how-indeterminate-is-an-indeterminate-value/
https://doi.org/10.1145/2813885.2738005
http://www.lysator.liu.se/c/bwk-on-pascal.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html
https://doi.org/10.1145/3140587.3062343
http://xavierleroy.org/publi/compcert-CACM.pdf
http://xavierleroy.org/publi/compcert-CACM.pdf
https://hal.inria.fr/hal-00703441
https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-project
https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-project
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1726r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1726r0.pdf
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61502
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61502
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61502
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61502
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

PLOS ’21, October 25, 2021, Virtual Event, Germany Yodaiken

[29] Ganesan Ramalingam. 1994. The undecidability of aliasing. ACM
Transactions on Programming Languages and Systems (TOPLAS) 16, 5
(1994), 1467–1471.

[30] John Regehr. 2010. https://blog.regehr.org/archives/213
[31] John Regehr. 2016. The Strict Aliasing Situation is Pretty Bad. https:

//blog.regehr.org/archives/1307
[32] Dennis Ritchie. 1988. noalias comments to X3J11. (March 1988). https://

groups.google.com/g/comp.lang.c/c/K0Cz2s9il3E/m/YDyo_xaRG5kJ
[33] DM Ritchie, SC Johnson, ME Lesk, and BW Kernighan. 1978. The C

programming language, Bell Systems Tech. J 57, 6 (1978), 1991–2020.
[34] Eskil Steenberg. 2021. "Compiler Explorer UShort promotion UB".

https://godbolt.org/z/7q9dPzEfM
[35] Eskil Steenberg. 2021. Redefining Undefined Behavior N2769. (21 6

2021). http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2769.pdf
[36] Linus Torvalds. [n.d.]. Reloc-Hide in Linux Kernel. https://github.com/

torvalds/linux/blob/35e43538af8fd2cb39d58caca1134a87db173f75/
include/linux/compiler-gcc.h

[37] Linus Torvalds. 2009. Re Gcc inlining heuristics. https://www.mail-
archive.com/linux-btrfs@vger.kernel.org/msg01647.html

[38] Linus Torvalds. 2018. Re: [GIT PULL] Device properties framework
update for v4.18-rc1. https://lkml.org/lkml/2018/6/5/769

[39] Linus Torvalds. 2018. Re: LKMM litmus test for Roman Penyaev’s
rcu-rr. https://lkml.org/lkml/2018/6/7/761

[40] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. 2012. Undefined Behavior: What
Happened to My Code?. In Proceedings of the Asia-Pacific Work-
shop on Systems (Seoul, Republic of Korea) (APSYS ’12). Association
for Computing Machinery, New York, NY, USA, Article 9, 7 pages.
https://doi.org/10.1145/2349896.2349905

[41] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-
Lezama. 2015. A Differential Approach to Undefined Behavior Detec-
tion. ACM Trans. Comput. Syst. 33, 1, Article 1 (March 2015), 29 pages.
https://doi.org/10.1145/2699678

[42] William A Wulf. 1972. Systems for systems implementors: some
experiences from Bliss. In Proceedings of the December 5-7, 1972, fall
joint computer conference, part II. 943–948.

[43] Victor Yodaiken. 2021. Compiler Explorer ISO C Division. https:
//godbolt.org/z/zWh9c5e84

[44] Victor Yodaiken. 2021. Example of Clang and type based alias. https:
//godbolt.org/z/nq19n8dhE

https://blog.regehr.org/archives/213
https://blog.regehr.org/archives/1307
https://blog.regehr.org/archives/1307
https://groups.google.com/g/comp.lang.c/c/K0Cz2s9il3E/m/YDyo_xaRG5kJ
https://groups.google.com/g/comp.lang.c/c/K0Cz2s9il3E/m/YDyo_xaRG5kJ
https://godbolt.org/z/7q9dPzEfM
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2769.pdf
https://github.com/torvalds/linux/blob/35e43538af8fd2cb39d58caca1134a87db173f75/include/linux/compiler-gcc.h
https://github.com/torvalds/linux/blob/35e43538af8fd2cb39d58caca1134a87db173f75/include/linux/compiler-gcc.h
https://github.com/torvalds/linux/blob/35e43538af8fd2cb39d58caca1134a87db173f75/include/linux/compiler-gcc.h
https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg01647.html
https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg01647.html
https://lkml.org/lkml/2018/6/5/769
https://lkml.org/lkml/2018/6/7/761
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2699678
https://godbolt.org/z/zWh9c5e84
https://godbolt.org/z/zWh9c5e84
https://godbolt.org/z/nq19n8dhE
https://godbolt.org/z/nq19n8dhE

	Abstract
	1 Introduction
	2 Optimization and time bombs
	2.1 Effects on Operating System development

	3 Undefined behavior and land mines
	3.1 Arithmetic Overflow
	3.2 What is lost

	4 What is gained
	A Acknowledgments
	References

