
RAI: A Scalable Project Submission System for Parallel Programming Courses

Abdul Dakkak∗, Carl Pearson†, Cheng Li∗, and Wen-mei Hwu†
∗Department of Computer Science

†Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana, USA
{dakkak, pearson, cli99, w-hwu}@illinois.edu

Abstract—A major component of many advanced pro-
gramming courses is an open-ended “end-of-term project”
assignment. Delivering and evaluating open-ended parallel
programming projects for hundreds or thousands of students
brings a need for broad system reconfigurability coupled with
challenges of testing and development uniformity, access to
esoteric hardware and programming environments, scalabil-
ity, and security. We present RAI, a secure and extensible
system for delivering open-ended programming assignments
configured with access to different hardware and software
requirements. We describe how the system was used to deliver a
programming-competition-style final project in an introductory
GPU programming course at the University of Illinois Urbana-
Champaign.

Keywords-GPU; CUDA; OpenCL; OpenACC; massive open
online courses; programming education; online education

I. INTRODUCTION

Many programming classes have an open-ended project-
style final assignment where students engage with a large-
scale, realistic or otherwise more significant applications of
course content. Typical goals of such class projects are to
expose students to more practical processes and challenges
of programming, including experience in manipulating ancil-
lary tools like compilers, profilers, and debuggers. In contrast
with weekly lab assignments, which have a focused design
and narrow pedagogical goals, the end-term project typically
presents a more open-ended task which requires 5 to 8 weeks
for teams of 2 to 4 students to complete.

The “Applied Parallel Programming” (ECE408/CS598)
course at the University of Illinois Urbana-Champaign ends
with such a project. Applied Parallel Programming is an
introductory junior/senior level course that starts with eight
weekly labs, followed by a 5-week programming project.
During the fall of 2016, the open-ended project task was for
student teams to write a high-performance CUDA imple-
mentation of a convolutional neural network inference step.

In early offerings of the course, students were provided
with remote access to a batch submission system on a
small GPU cluster hosted at the University of Illinois.

This work was supported by the Starnet Center for Future Architecture
Research (C-FAR), NVIDIA GPU Center of Excellence at UIUC, the IBM-
Illinois Center for Cognitive Computing Systems Research (C3SR), and the
NSF Blue Waters Award (0725070).

Figure 1. The RAI system architecture is composed of a client interacting
with a message broker (queue). Many Amazon P2 instances (NVIDIA K80
GPUs) subscribe to the queue and accept jobs. The infrastructure relies
upon on a file server (Amazon S3) as well as a MongoDB database.

As course enrollment grew and the Heterogeneous Paral-
lel Programming course on Coursera was developed with
the same material, challenges of scalability, security, and
automatic grading led to the development and continued
use of WebGPU [1] for the weekly labs. WebGPU is a
scalable, secure system which allows students to write and
execute code through a web interface. WebGPU hides some
system configuration options and more advanced profiling
and debugging tools to emphasize the educational objectives
of the labs. WebGPU allows the weekly lab component
of the course to scale to thousands of remote students on
Coursera. The remaining key course infrastructure challenge
became delivering a configurable, secure, flexible remote
programming environment to scale the project component
of the course.

This paper describes RAI 1, an open-source project-
submission system designed as a configurable programming
environment for parallel programming courses. RAI is an
interactive command line tool used for project job submis-
sions. Students specify steps to build and run their project;
the project is then deployed to a worker node and run

1http://www.rai-project.com

http://www.rai-project.com

within a sandboxed container. This paper also describes
the experience of using RAI to administer a performance
oriented competition offered during the fall of 2016 for the
Applied Parallel Programming at the University of Illinois
Urbana-Champaign.

The rest of this paper is organized as follows. Section II
describes the motivation for developing the project sub-
mission system. Section III discusses related works. These
systems include traditional batch-based submission system
backed by a local cluster as well as continuous-integration
infrastructures. Section IV describes the system architecture
of RAI, detailing the components of the system, and shows
how both security and scalability follow from the system’s
architectural choices. Section V describes how the students
interact with RAI to submit their projects. Section VI
describes the instructor and student utilities that can be
used to interact and query the system. Section VII outlines
the lessons learned during the development, deployment,
and distribution of the tools. The section also details the
challenges in administering the project as well as the current
limitations of the system. Finally, section VIII concludes.

II. MOTIVATION

Since students have more freedom to make development
choices during a course project, the development environ-
ment must be correspondingly more flexible. This is often
at odds with project evaluation, which must be done in
a uniform way to ensure fair outcomes for students. The
number and remote nature of students also require non-
traditional approaches and extra attention to security and
isolation.

Accessibility and Scalability

Even in the best circumstances, outfitting students with
individualized access to different software stacks (e.g.
CUDA, OpenCL, OpenACC, MPI, high-level synthesis
toolchains, profilers, debuggers) and hardware (e.g. many-
core CPUs, GPUs, DSPs, FPGAs, high-performance inter-
connects, distributed-memory systems) is inconvenient or
impossible. For example, 70% of the 176 students in the
fall 2016 Applied Parallel Programming course did not
have access to a CUDA-programmable GPU. Consequently,
appropriate development environments must be provided
to students as part of the course. When coupled with
the growing trend of delivering post-secondary education
through web-based massive open online courses (MOOCs),
the disparate student locations demand that access to pro-
gramming environments with these capabilities to be offered
over the internet. Furthermore, the sheer number of students
only compounds any challenges. Any solution must scale
to thousands of concurrent users. If even a small fraction
of students face configuration problems, it will quickly
overwhelm any course staff.

System Configurability and Evaluation Uniformity

The motivation for parallel programming is to achieve
high performance. In pursuit of performance, students may
be required to perform major code refactoring activities (e.g.
replacing algorithms, performing program transformations,
or picking constants such as unroll or tiling factors), modify
build systems, and interact with profiling and debugging
tools. The programming environment must therefore provide
nearly the same capabilities and flexibility as full system
access. However, for the teaching staff to efficiently evaluate
projects, there must be uniformity in the development and
testing process.

Security and Isolation

The flexibility of the project development system also in-
troduces challenges from a system administration standpoint,
since such flexibility poses a security concern. Even in a
traditional educational environment where structures are in
place to moderate student behavior, academic integrity, and
system stability demand that student development and test-
ing are isolated from other students. When remote students
have a less formal relationship with an educational insti-
tution, the programming environment must be substantially
hardened against bad behavior. Currently, there is a lack of
scalable systems that allow instructors to assign projects and
give students complete control of a system within a confined
environment.

Maintainability and Cost

When a parallel programming course requires uncommon
hardware (GPUs and FPGAs) and software (CUDA, high-
level synthesis tools) it may be cost-prohibitive to outfit
uniform labs and clusters. Some universities and classrooms
address these challenges by mandating students to have
the hardware/software resources as a course requirement.
For anything other than a small class, the overhead of
managing minor variations in student environments be-
comes intractable. Furthermore, the general unavailability
of many high-performance parallel computing systems and
the diversity of the computing architectures used makes this
impractical for parallel computing courses. When access
must be provided to students over the internet (who may
not be directly affiliated with the host institution), the
institution may be unwilling to incur the costs of managing
the additional users and the security and privacy challenges
they bring.

III. RELATED WORK

Some programming and submission systems address con-
cerns mentioned in Section II, Table I breaks down the
relevant features of selected programming and/or submission
systems and compares them to RAI.

Table I
EXISTING PROGRAMMING AND SUBMISSION SYSTEMS CURRENTLY

USED DO NOT AFFORD THE RECONFIGURABILITY, ISOLATION,
SCALABILITY, ACCESSIBILITY, AND UNIFORMITY NEEDED FOR LARGE

OPEN-ENDED PROGRAMMING EXERCISES.

System Configurability Isolation Scalability Accessibility Testing Uniformity
Sudent-Provided X X X × ×
Torque/PBS X X X X ×
WebGPU × X X X X
Jenkins X X X × X
QwikLabs × X X X ×
RAI X X X X X

Using Locally-Hosted Resources

Traditionally, a programming course would start with a lab
submission system such as WebGPU [1] and transition to a
managed local university cluster for the project. These clus-
ters are typically configured with a Torque- or PBS-like [2]
batch submission system for their users. In traditional high
performance cluster settings, this can be combined with
tools such as Maui [3], Moab [4] and Slurm [5] to abstract
away the cluster resources and schedule workloads onto the
cluster. Jobs are expected to be long (longer than a few
minutes) to amortize the scheduling overhead.

Such systems can give the user the full flexibility as
if the environment were their own, but also come with
several problems. First, the fixed resources of the local
cluster can become oversubscribed during the final weeks
of the semester (especially if other instructors have the
same project submission strategy). During the last few days,
the cluster queue can become long, causing delays and
a poor experience for the students. Second, the course
staff is left to develop tools and techniques for ensuring
that all students are developing code following whatever
the evaluation criteria will be. Finally, equipping an entire
cluster with esoteric hardware for a single programming
course may not be achievable.

Using Cloud and Cluster Resources

Other approaches, like WebGPU, use remote cloud re-
sources. These systems offer a scalable and secure online
development environment where students write and execute
code through a web interface. These online development
environments hide the system configuration options and
disallow more advanced profiling and debugging tools to
keep the focus on the educational objectives of each lab.

Several cloud submission systems are similar to RAI.
On cloud and clusters, Apache Mesos [6] with Chronos
provide an abstraction of the hardware as well as the ability
to specify required resources. Continuous Integration (CI)
systems can also be thought of as a job submission system
– where a build and test task is submitted after each commit
to the repository. Both Hudson [7] and Jenkins [8] are widely
used tools which hook into source code repositories and
run whenever a developer commits a change. The build
configuration for both Hudson and Jenkins is specified via a
GUI or XML. Other CI tools such as TravisCI and Bitbucket

Pipelines are more integrated with repositories hosted on
Github or Bitbucket, respectively. TravisCI and Bitbucket
Pipelines are easier to use, with the configuration being
done primarily via a YAML [9] file (these tools inspire the
configuration for RAI). Like RAI, TravisCI and Bitbucket
Pipelines execute commands within a Docker container with
the user specifying the base image; executing the build
steps specified by the YAML configuration file committed to
the repository. Unlike RAI, however, both tools are closed
source and require code to be committed before running the
build. Additionally, to our knowledge, no CI tool can run
GPU or FPGA code.

IV. RAI SYSTEM ARCHITECTURE

The RAI job submission system is composed of clients,
workers, queues, a file server, and a database. Figure 1 shows
a high-level view of the system architecture. RAI is not hard-
coded to Amazon’s AWS and can be used on a local cluster
if desired. RAI can also be configured to scale out to remote
cloud instances as local resources if exhausted.

RAI Client

The RAI client is an executable downloaded by the
students and runs on the students’ machines. The executable
requires no library dependencies and works on all the main
operating systems and CPU architectures. Both features
reduce the likelihood that students will have technical dif-
ficulties running the client. Students use the RAI client to
interact with the system and to submit jobs. The client can
submit jobs during project development, but students can
also choose a mode to make a final submission for grading.
The RAI client offers other features such as checking team
ranking within a competition project.

To use the client, the student must create a file that
contains authentication keys that uniquely identify students
or teams of students. These keys are generated by the
teaching staff through a companion utility and provided
to the students as described in Section VI. Section VII
describes how we deliver the client to the students.

RAI Worker

The RAI worker acts as an agent that starts a sandboxed
environment to executes students’ code. Multiple worker
nodes can exist within the RAI environment, thus making
the system elastic and able to scale out. Because of current
limitations of Docker GPU integration, the worker must run
on a Linux system.

Message Broker

The message broker arbitrates communication between
clients and workers to maintain fairness and resiliency for
submissions. Workers and clients connect and subscribe
to different queues on the broker. Both the RAI clients
and workers subscribe to the message broker and exchange
messages using a publish/subscribe communication pattern.

MongoDB Database

We use MongoDB [10], a NoSQL database, to store meta-
information about submissions, including execution times,
run-times, and logs. The information in this database is
useful for grading or any other coursework auditing process.
The database is also used to store team ranking within a
project competition.

File Storage Server

When a student submits a job to RAI, their project
directory gets uploaded to a file server. Upon job completion,
the worker node’s output directory is also uploaded to the
file server and is available for the student to download. In
this way, students can have access to any output or logging
files their job generates. The file server is also used by
the instructor to download all files tagged as final project
submissions.

Files uploaded to the file server can be configured to have
a particular lifetime after which they get deleted. The current
lifetime is set between 1 and 3 months. We currently use
Amazon’s S3 [11] services as the file server.

V. RAI SUBMISSION

A student submission requires coordination between the
client (running on the student’s machine), the message
broker, and the worker nodes. Since RAI is a distributed
architecture, these operations need to happen in order and
be robust to failures. This section describes how a student
specifies the project build and run procedure as well as the
sequence of operations that happen when a job is submitted
to RAI.

Execution Specification

The student build steps are specified in YAML format
in a file called rai-build.yml that exists in the project
base directory. The build file is architected to be minimal,
allowing it to be extended for future changes. We may want
to specify the machine requirements (such as the number
of GPUs) in the future, for example. Listing 1 shows the
default rai-build.yml file.

The build file is split into a configuration section (lines
1-3) and a command section (lines 4-11). Within the con-
figuration part, line 2 specifies the client version. Line 3
specifies the Docker base image used to run the commands.
Students can choose from a whitelist of base images. The
build commands (lines 6 − 11) are the commands to be
executed on the worker node. Line 6 echoes Building
project to the terminal. Line 7 uses CMake [12] to
configure the build system. CMake is used to provide a
portable build system that can generate Makefile, Apple’s
XCode, or Microsoft’s Visual Studio project build files.
For the Applied Parallel Programming class, we use the

1 rai:

2 version: 0.1

3 image: webgpu/rai:root

4 commands:

5 build:

6 - echo "Building project"

7 - cmake /src

8 - make

9 - ./ece408 /data/test10.hdf5

/data/model.hdf5↪→

10 - nvprof --export-profile timeline.nvprof --

11 ./ece408 data/test10.hdf5 /data/model.hdf5

Listing 1: The default YAML file used in Applied Parallel
Programming when a student-written rai-build.yaml
is not found. The above file configures the project using
CMake and then uses make to build the project. The code
is executed using the test10 dataset – a small test dataset.
It then runs nvprof to profile and program and stores the
result into timeline.nvprof.

Hunter [13] to manage and install the project dependencies2.
To speed the build process, we disable Hunter and provide
the dependencies as part of the base Docker image. By
default, CMake generates a Makefile project, line 8 uses
the generated Makefile to build the project. The generated
executable is called ece408. Line 9 runs the ece408
binary with the test dataset /data/test10.hdf5 along
with the pre-trained model /data/model.hdf5. Lines
10−11 is a command split into multiple lines. The command
runs the ece408 executable within nvprof and saves
the results to timeline.nvprof. The /build directory
is uploaded to the file server and student can access the
timeline.nvprof file and view it using the nvvp
viewer.

Message Broker Operations

The message broker is composed of multiple topics, each
of which has multiple channels. Consumers can subscribe
and enqueue messages to a given topic and a channel.We
will use the notation topic_name/channel_name to
denote the channel within a topic (also called the queue
route).

By default, clients publish the job message onto
rai/tasks. Each job is given a unique identifier. All
workers listen to this channel and accept the message if
they have enough resources; we place constraints on the
number of jobs that can be executed concurrently. If the
constraints are met, then the worker accepts the message
and creates a new ephemeral topic and channel called
log_${job_id}/#ch which the client subscribes to —
both the topic and channel are deleted if there are no

2The project uses the HDF5 [14] format to store the neural network’s
model and test data files and thus depends on the libhdf5 library.

producers and consumers. The worker sends the output of
stdout and stderr along with logs, as messages to the
log_${job_id}/#ch and the client prints them to the
user’s screen.

Client Execution

On the client side, i.e. on the student’s machine, we
perform the following steps: 1 The client checks if the
project directory specified exists on the file system and con-
tains the rai-build.yml file. If the rai-build.yml
file does not exist, then a default (shown in Listing 1) is
used. 2 The user credentials are verified. This means that
both the RAI_SERCRET_KEY and the RAI_ACCESS_KEY
are valid – these keys are sent by the instructor using the
mechanism detailed in section VI. 3 The project directory
is compressed into a .tar.bz2 file and uploaded to the file
server. We currently use Amazon’s S3, but other object file
servers can be used. We configure the uploaded file so that it
is deleted one month after the last use. 4 A new job request
is created and pushed onto the queue server. 5 The client
subscribes to the log-${job_id} topic which is where
the worker will publish the stdout and stderr outputs.
6 The client prints the messages on the log-${job_id}

topic until the End message is received. 7 If the execution
is a submission, then the execution time along with the team
name are recorded by the database server. 8 The client
exits once the End message is received.

Worker Operations

On the worker side, i.e. on the machine outfitted with
a GPU, we perform the following steps: 1 a worker
subscribes to the rai channel on the queue. 2 When a
message is received, the worker parses the message, checks
the credentials, and then extracts the rai-build.yaml
file embedded in the job message. 3 A Docker container
starts with the base image specified by the job configuration,
if the machine does not have the Docker image, then it’s
pulled from the Docker repository. For security, the container
is configured with limited RAM and no network access. The
worker mounts the nvidia-docker [15] CUDA volume
onto the container. The worker also creates a pipe where all
the output from the container’s stderr and stdout are
forwarded as messages to the log-${job_id} topic on
the queue. 4 The location of the client directory (posted on
the file worker) is parsed from the job message. The worker
then downloads the client directory and mounts it onto the
Docker container’s /src directory, the worker also creates
a /build directory and sets it to be the user’s working
directory. 5 The worker then starts executing the com-
mands within the rai-build.yaml file in the container.
6 After the execution is complete, the worker creates a
.tar.bz2 of the container’s /build directory and up-
loads it to the file server. The URL of the uploaded /build
directory is sent as a message to the log-${job_id}

1 rai:

2 version: 0.1

3 image: webgpu/rai:root

4 commands:

5 build:

6 - echo "Submitting project"

7 - cp -r /src /build/submission_code

8 - cmake /src

9 - make

10 - /usr/bin/time ./ece408 /data/testfull.hdf5

/data/model.hdf5 10000↪→

Listing 2: RAI enforces student final submissions to auto-
matically use this build file. This is done to maintain unifor-
mity across submissions and guarantee that instructors can
replicate the execution while grading. The build file copies
the student source code to /build/submission_code
and uses the full dataset for evaluation.

topic on the queue. 7 Once the /build directory has been
uploaded, the container is destroyed and an End message is
sent to the queue.

The worker can be configured to have multiple jobs in
flight. Towards the beginning of the project, when students
are not utilizing the GPU, and CPU time dominates the job
runtime, the worker accepts multiple jobs at the same time.
In the last two weeks of the project, when students are micro-
profiling and optimizing their codes, the worker accepts only
one task at a time – this makes the performance timing more
accurate and repeatable.

Student Final Submission

Students use the same RAI client to perform their fi-
nal submission. The final submission execution has four
additional requirements on top of the regular submis-
sion. 1 Students used the rai submit subcommand.
2 The submission required the presence of the USAGE

(which contains instructions on how to run the code to
get the profile results in the report) and report.pdf
(which is the final report). 3 The code is run using
the rai-build.yaml file shown in Listing 2 and the
student’s local rai-build.yaml file is ignored – this is
used to maintain consistency between all team submissions.

In Listing 2, line 7 performs a copy of the /src directory
to the /build/submission_code directory. The file
server contains the submitted code along with the build
results in one archive. We record the location of the build
results on the file server and use it to download all stu-
dent submissions. This is described in section VI. 4 The
timing results are recorded onto the ranking database, and
overwrites existing timing records. Both the results from the
internal timer and the output from /usr/bin/time are
recorded with only the internal timer visible to students. The
results from the time command are shown to the instructors

0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

5

6

Runtime in Seconds

N
u
m
b
er
o
f
te
am
s

Figure 2. The histogram plots the distribution of the top 30 team runtimes.
Each bin in the histogram is 0.1 second interval. For example, 5 teams had
a runtime between 0.4 and 0.5 seconds.

during grading.

Container Execution

All student execution commands, specified within the
rai-build.yaml, are performed within a Docker con-
tainer. The default RAI container is configured with the
latest CUDA toolkit along with CUDNN [16] and other
neural network frameworks such as Tensorflow [17] and
Torch7 [18]. This was done to allow students to compare
their implementation against standard tools.

A new container is started for each job and is terminated
after completion. To limit denial of service attacks and to
maintain fairness, each student can only submit a job every
30 seconds, and the Docker container is configured without
network access, only 8GB of memory, and a maximum
lifetime of 1 hour. These limits can be changed using the
RAI worker configuration file.

VI. INSTRUCTOR AND STUDENT UTILITIES

Outside of job submission, RAI offers instructors and
students a set of utilities that can be used to interact with
and query the system. These commands perform tasks such
as checking the student ranking within the competition,
creating and sending the keys to students, downloading the
student’s final submissions, etc. . .

Competition Ranking

The Applied Parallel Programming project was a compe-
tition where students formed teams and worked to create the
fastest implementation of a fixed neural network inference
step. Teams were provided with a baseline serial CPU
implementation and a set of neural network weights. The
serial implementation took around 30 minutes to complete
using the full dataset. Teams were required to use the pro-
vided weights and maintain a target accuracy. To encourage

competition, teams were able to see their ranking using
RAI. The students could also see other teams’ anonymized
runtimes.

Figure 2 shows how the final submission of the top 30
teams fell into each runtime quantum (each quantum is 0.1
seconds). Most teams fell within the 1 second runtime. The
slowest submission took 2 minutes to complete.

Sending Authorization Keys

Hello FirstName LastName,

For the Applied Parallel Programming project,

we will not be using WebGPU. The RAI submission

requires authentication tokens to be present

in your $HOME/.rai.profile (Linux/OSX) or

%HOME%/.rai.profile (Windows) file.

The following are your tokens:

RAI_USER_NAME='myusername'

RAI_ACCESS_KEY='BsqJuFUI2ZtK4g1aLXf-OjmML6'

RAI_SECRET_KEY='tUO8PuKhtR9qozBNn33RcH7p5A'

Listing 3: The above is an abbreviated version of the
authentication email sent to each student in the class. It
includes unique authorization keys required to use the RAI
client for the project. The complete email also details how
to download and configure the RAI client.

To prevent RAI resources from being consumed by
people who are not registered for the course, each stu-
dent is required to have an authorization key to use
the RAI system. We developed a tool to automate the
generation and delivery of the keys. The tool takes as
input the class roster, a comma separated file of the
form {firstname,lastname,userid}, and creates
an email message based on a predefined template (the core
of the email is shown in Listing 3). The tool then emails the
message to the students.

Downloading and Running Students’ Submissions

Section IV describes how all submissions are stored on
a centralized file server, and how the final submissions are
recorded. We developed a tool that queries the database for
the final submissions and downloads the corresponding files
from the file server. The tool would then un-archive the
downloaded file.

The tool can be run with the option to delete unneeded
files, such as intermediate files generated by make and
the given dataset. The tool can also be instructed to rerun
the students’ submissions multiple times and display the
minimum time. This was done to get a more accurate
measurement of the student execution times during project
evaluation.

Figure 3. The RAI client download links are available on the project
website. Students can download either the stable or a development versions
of the client. The links are continuously updated and reflect the latest builds
from both the master and devel branches of the RAI source code.

VII. LESSONS AND EXPERIENCE

In the Applied Parallel Programming course, 176 students
formed 58 teams and used the RAI system to submit their
projects. This section describes the successful experience of
using RAI in real coursework, discusses some interesting
insights, and lessons learned.

Project Grading

Delivering, administering, and maintaining fairness for
a competition with many participants is tricky. Since stu-
dents have wide latitude when modifying code in open-
ended project, RAI does not attempt to specifically support
automated grading. The project grading rubric is based
on a combination of performance (30%), functionality and
correctness (20%), code quality (10%), and an 8-10-page
written report (40%). Both the code quality and the report
evaluation are performed with human intervention. A project
which is graded purely on performance and correctness
could be automatically graded using RAI and a simple script.

RAI checked the students’ submissions for the required
files, source code, and written report. Grading the final
submission included 1 re-running project multiple times
and recording the best observed performance, 2 recomput-
ing the ranking, 3 and grading the project report. While
3 needs manual review, 1 and 2 were completed by

RAI automatically using utility commands.
A grade report for each team was then generated by com-

bining the automated and manual feedback. The grade report
was then posted onto the University’s grade management
system.

RAI Client Delivery

Information on how to use RAI and the location to down-
load the client were given during the course lectures, posted
on the forums, and linked within the project description.

Dec 12 Dec 19
0

100

200

300

400

500

N
u
m
b
er
o
f
S
u
b
m
is
si
o
n
s

Figure 4. During the last 2 weeks of the course, a total of 30, 782
submissions were made to RAI. This figure shows a timeline of the number
of compilation per hour for the last 2 weeks of the course. Students made a
significant number of submission during the last week of the course which
followed their circadian rhythm.

Figure 3 shows how the RAI client downloads was presented
to the students.

We configured the RAI source code repository with two
branches: a master branch which contains a stable version
of the code base and a devel branch with added features and
fixes for non-critical bugs. The devel branch was merged
into master as the changes were deemed to be stable.

A continuous build system was configured to build both
branches and cross-compile them to other operating systems
and architectures. The built binaries are then uploaded to
Amazon S3 and linked to the project’s home page. Students
were able to download either the development or stable
version of the client.

The commit version information and build date are em-
beeded within the RAI binary. Students would provide this
information when they reported bugs, which allowed us to
narrow which commit introduced the regression. Since we
automated the build and delivery process, code changes to fix
bugs or address features were automatically made available
to students without further action from us. This reduced the
administrative load on the teaching staff.

Resource Usage

All students were observed to be using Linux, Mac
OSX, and Windows, which were available on their personal
machines or campus labs. We kept all the submissions on the
file server during the entire duration of the project period.
In total, the file server held 100GB of data for 176 students.

At the beginning of the project, student activity revolved
around experimenting with the provided baseline serial CPU
code. This code is slow and requires more CPU com-
pute resources than GPU resources. Therefore, we initially
provisioned RAI workers which had less powerful GPUs
(AWS G2 instances with NVIDIA Tesla K40 GPUs). These

instances are cheaper than instances with more powerful
GPU resources. Since this baseline code took dozens of
minutes to execute, student submissions were infrequent,
and we were able to improve performance consistency by
restricting a RAI worker to run a single job at a time.

Over the following weeks as students developed optimized
GPU implementations, we transitioned to AWS P2 instances
with NVIDIA Tesla K80 GPUs. By the end of the course, 10
instances each allowing multiple pending submissions were
needed to provide an interactive response time for students.
The last week of the course is when students start performing
benchmarks and sensitive profiling. To accommodate this,
we provisioned 20 to 30 AWS P2 instances which only
accept one job submission at a time.

We found that students worked in bursts, which required
RAI to be elastic to remain reliable and cost-efficient.
Figure 4 shows the number of submissions per hour for the
last 2 weeks of the course.

VIII. CONCLUSION

This paper describes the design and architecture of RAI,
a scalable project submission system used for parallel pro-
gramming courses. RAI addresses challenges of scalability,
configurability, security, and cost in delivering a flexible
parallel programming environment to students in large-scale
programming classes.

By using RAI, students in the Applied Parallel Pro-
gramming course and the University of Illinois Urbana-
Champaign were able to develop and profile their project
without having local GPU resources or being aware of the
implementation details of RAI. In all, 176 students used RAI
to make over 40, 000 project submissions which amounted
to over 100GB of uploaded data and 25GB of logs and
meta-data. Students had full flexibility to engage with the
development environment in a realistic way.

RAI can cope with submission bursts that occur before
project deadlines while allowing administrators to optimize
utilization and costs of making esoteric hardware architec-
tures and programming environments available to students.
Future work of RAI includes allowing instructors to con-
figure interactive sessions to enable more debugging and
profiling tools.

REFERENCES

[1] A. Dakkak, C. Pearson, and W.-M. Hwu, “Webgpu: A
scalable online development platform for gpu programming
courses,” in Parallel and Distributed Processing Symposium
Workshops, 2016 IEEE International. IEEE, 2016, pp. 942–
949.

[2] A. Computing and G. Computing. Torque resource manager.
[Online]. Available: http://www.adaptivecomputing.com

[3] B. Bode, D. M. Halstead, R. Kendall, Z. Lei, and D. Jackson,
“The portable batch scheduler and the maui scheduler on
linux clusters.” in Annual Linux Showcase & Conference,
2000.

[4] A. Computing. Moab hpc suite. 2016. [Online]. Available:
http://www.adaptivecomputing.com/products/

[5] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple
linux utility for resource management,” in Workshop on Job
Scheduling Strategies for Parallel Processing. Springer,
2003, pp. 44–60.

[6] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data center.”
in NSDI, vol. 11, 2011, pp. 22–22.

[7] O. Hudson. Extendable cntinuous integration server. [Online].
Available: http://hudson-ci.org

[8] C. Jenkins. An extendable open source continuous integration
server. [Online]. Available: http://jenkins-ci.org

[9] O. Ben-Kiki, C. Evans, and B. Ingerson, “Yaml ain’t markup
language (yaml™) version 1.1,” yaml. org, Tech. Rep, 2005.

[10] Mongodb database. 2017. [Online]. Available: https://www.
mongodb.com/

[11] Amazon. Amazon simple storage service (amazon s3). 2017.
[Online]. Available: https://aws.amazon.com/s3/

[12] Kitware. Cmake build system. 2017. [Online]. Available:
https://cmake.org/

[13] R. Baratov. The hunter cross-platform package manager
for c++. 2017. [Online]. Available: https://github.com/ruslo/
hunter

[14] M. Folk, A. Cheng, and K. Yates, “Hdf5: A file format and
i/o library for high performance computing applications,” in
Proceedings of Supercomputing, vol. 99, 1999, pp. 5–33.

[15] NVIDIA. Nvidia docker. 2017. [Online]. Available: https:
//github.com/NVIDIA/nvidia-docker

[16] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives
for deep learning,” arXiv preprint arXiv:1410.0759, 2014.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al.,
“Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[18] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A
matlab-like environment for machine learning,” in BigLearn,
NIPS Workshop, no. EPFL-CONF-192376, 2011.

http://www.adaptivecomputing.com
http://www.adaptivecomputing.com/products/
http://hudson-ci.org
http://jenkins-ci.org
https://www.mongodb.com/
https://www.mongodb.com/
https://aws.amazon.com/s3/
https://cmake.org/
https://github.com/ruslo/hunter
https://github.com/ruslo/hunter
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker

	Introduction
	Motivation
	Related Work
	RAI System Architecture
	RAI Submission
	Instructor and Student Utilities
	Lessons and Experience
	Conclusion
	References

